Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(12): 123001, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179211

RESUMEN

We explore a wide range of fundamental magnetic phenomena by measuring the dephasing of matter-wave interference fringes upon application of a variable magnetic gradient. The versatility of our interferometric Stern-Gerlach technique enables us to study the magnetic properties of alkali atoms, organic radicals, and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less than a nuclear magneton. We find evidence for magnetization of a supersonic beam of organic radicals and, most notably, observe a strong magnetic response of a thermal C_{60} beam consistent with high-temperature atomlike deflection of rotational magnetic moments.

2.
Phys Chem Chem Phys ; 22(25): 14036-14041, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32567610

RESUMEN

We measure the diamagnetic deflection of anthracene and adamantane in a long-baseline matter-wave interferometer. From the nanometer-level deflection we extract the magnetic susceptibilities of the molecules which we compare with calculations and previous results. Adamantane yields an isotropic average mass susceptibility of -8.0 ± 1.1 m3 kg-1, consistent with expectations, while anthracene yields a higher-than-anticipated value of -13.6 ± 1.3 m3 kg-1. We attribute the high anthracene value to the planar aromatic molecule's magnetic anisotropy and partial alignment in the molecular beam, and estimate the magnitude of the effect on the observed deflection.

3.
Phys Chem Chem Phys ; 21(44): 24478-24488, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31686071

RESUMEN

Molecular beam electric deflection experiments on neutral single copper-doped tin clusters are presented at different cryogenic nozzle temperatures. The experimental cluster beam profiles SnNCu (N = 9-16) are compared with classical rotational dynamic simulations of globally optimized structures obtained by a genetic algorithm based on density functional theory. The formation of endohedral complexes with comparable geometry to manganese- and gold-doped tin is confirmed. Theoretical methods predict ionic structures of the type Cuδ-@SnNδ+ with electron transfer from the tin cage to the central copper dopant. This behaviour is discussed based on a molecular orbital picture particularly with respect to other transition metal tetrel complexes.

4.
Phys Rev Lett ; 121(17): 173002, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411911

RESUMEN

We establish that matter-wave diffraction at near-resonant ultraviolet optical gratings can be used to spatially separate individual conformers of complex molecules. Our calculations show that the conformational purity of the prepared beam can be close to 100% and that all molecules remain in their electronic ground state. The proposed technique is independent of the dipole moment and the spin of the molecule and thus paves the way for structure-sensitive experiments with hydrocarbons and biomolecules, such as neurotransmitters and hormones, which have evaded conformer-pure isolation so far.

5.
J Chem Phys ; 149(24): 244308, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30599714

RESUMEN

We present the first experimental optical absorption spectra of isolated CdSe 2 + and Cd2 Se 2 + species in the photon energy range ℏω = 1.9-4.9 eV. We probe the optical response by measuring photodissociation cross sections and combine our results with time-dependent density functional theory and equation-of-motion coupled cluster calculations. Structural candidates for the time-dependent excited state calculations are generated by a density functional theory based genetic algorithm as a global geometry optimization tool. This approach allows us to determine the cluster geometries present in our molecular beams by a comparison of experimental spectra with theoretical predictions for putative global minimum candidates. For CdSe 2 + , an excellent agreement between the global minimum and the experimental results is presented. We identify the global minimum geometry of Cd2 Se 2 + as a trapezium, which is built up of a neutral Se2 and a cationic Cd 2 + unit, in contrast to what was previously proposed. We find an excellent overall agreement between experimental spectra and excited state calculations. We further study the influence of total and partial charges on the optical and geometric properties of Cd2Se2 and compare our findings to CdSe quantum dots and to bulk CdSe.

6.
Entropy (Basel) ; 20(7)2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33265606

RESUMEN

Matter-wave near-field interference can imprint a nano-scale fringe pattern onto a molecular beam, which allows observing its shifts in the presence of even very small external forces. Here we demonstrate quantum interference of the pre-vitamin 7-dehydrocholesterol and discuss the conceptual challenges of magnetic deflectometry in a near-field interferometer as a tool to explore photochemical processes within molecules whose center of mass is quantum delocalized.

7.
Appl Phys B ; 123(1): 3, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28018052

RESUMEN

We present matter-wave interferometry as a tool to advance spectroscopy for a wide class of nanoparticles, clusters and molecules. The high sensitivity of de Broglie interference fringes to external perturbations enables measurements in the limit of an individual particle absorbing only a single photon on average, or even no photon at all. The method allows one to extract structural and electronic information from the loss of the interference contrast. It is minimally invasive and works even for dilute ensembles.

8.
Angew Chem Int Ed Engl ; 56(36): 10947-10951, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28599088

RESUMEN

It has recently been shown that matter-wave interferometry can be used to imprint a periodic nanostructure onto a molecular beam, which provides a highly sensitive tool for beam displacement measurements. Herein, we used this feature to measure electronic properties of provitamin A, vitamin E, and vitamin K1 in the gas phase for the first time. The shift of the matter-wave fringes in a static electric field encodes the molecular susceptibility and the time-averaged dynamic electric dipole moment. The dependence of the fringe pattern on the intensity of the central light-wave diffraction grating was used to determine the molecular optical polarizability. Comparison of our experimental findings with molecular dynamics simulations and density functional theory provides a rich picture of the electronic structures and dynamics of these biomolecules in the gas phase with ß-carotene as a particularly interesting example.

9.
Angew Chem Int Ed Engl ; 54(36): 10675-80, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206667

RESUMEN

The controversial nature of chemical bonding between noble gases and noble metals is addressed. Experimental evidence of exceptionally strong Au-Ar bonds in Ar complexes of mixed Au-Ag trimers is presented. IR spectra reveal an enormous influence of the attached Ar atoms on vibrational modes, particularly in Au-rich trimers, where Ar atoms are heavily involved owing to a relativistically enhanced covalency. In Ag-rich trimers, vibrational transitions of the metal framework predominate, indicating a pure electrostatic character of the Ag-Ar bonds. The experimental findings are analyzed by means of DFT calculations, which show how the relativistic differences between Au and Ag are manifested in stronger Au-Ar binding energies. Because of the ability to vary composition and charge distribution, the trimers serve as ideal model systems to study the chemical nature of the bonding of noble gases to closed-shell systems containing gold.

10.
JACS Au ; 3(10): 2790-2799, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37885583

RESUMEN

The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.

11.
Sci Adv ; 9(48): eadj2801, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039360

RESUMEN

The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in the gas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.

12.
Nanoscale ; 11(27): 12878-12888, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31243419

RESUMEN

We present molecular beam electric deflection experiments on neutral gold-doped tin clusters. The experimental SnNAu (N = 6-16) cluster beam profiles are interpreted by means of classical trajectory simulations supplied, with cluster structures generated by a genetic algorithm based on density functional theory. The combined experimental and theoretical analysis confirms that at least nine tin atoms are necessary to form a cage that is capable of encapsulating a gold atom, with high symmetry only marginally distorted by the gold atom. Two-component DFT calculations reveal that for some clusters spin-orbit effects are necessary to properly describe these species. Partial charge analysis methods predict the presence of charge transfer effects from the tin host to the dopant, resulting in a negatively charged gold atom.

13.
Beilstein J Nanotechnol ; 8: 325-333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243571

RESUMEN

Recent progress in synthetic chemistry and molecular quantum optics has enabled demonstrations of the quantum mechanical wave-particle duality for complex particles, with masses exceeding 10 kDa. Future experiments with even larger objects will require new optical preparation and manipulation methods that shall profit from the possibility to cleave a well-defined molecular tag from a larger parent molecule. Here we present the design and synthesis of two model compounds as well as evidence for the photoinduced beam depletion in high vacuum in one case.

14.
Nanoscale ; 8(21): 11153-60, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181365

RESUMEN

The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.

15.
Nanoscale ; 7(33): 14032-8, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26239404

RESUMEN

A new open-source parallel genetic algorithm, the Birmingham parallel genetic algorithm, is introduced for the direct density functional theory global optimisation of metallic nanoparticles. The program utilises a pool genetic algorithm methodology for the efficient use of massively parallel computational resources. The scaling capability of the Birmingham parallel genetic algorithm is demonstrated through its application to the global optimisation of iridium clusters with 10 to 20 atoms, a catalytically important system with interesting size-specific effects. This is the first study of its type on Iridium clusters of this size and the parallel algorithm is shown to be capable of scaling beyond previous size restrictions and accurately characterising the structures of these larger system sizes. By globally optimising the system directly at the density functional level of theory, the code captures the cubic structures commonly found in sub-nanometre sized Ir clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA