RESUMEN
A levitating cluster of condensed microdroplets can form over the heated area of a water layer. The thermocapillary (TC) flow at the surface of the water layer combined with the convective flow in the layer often prevents a cluster's stability due to disturbances that it creates in the gas flow over the water surface. The TC flow can be suppressed by introducing small amounts of surfactants into the water layer. We conduct a systematic study of the effect of a surfactant on the cluster. We show experimentally that the introduction of the surfactant sodium laureth sulfate with concentrations of 0.05-0.5 g/L can suppress the TC convection. It is shown that the amount of surfactant does not affect the condensational growth of droplets and the structure of the cluster. In the absence of the surfactant, a ring-shaped cluster is formed, which is reported in this paper for the first time.
RESUMEN
Water microdroplets condense over locally heated water-vapor interfaces and levitate in an ascending vapor-air flow forming self-assembled ordered monolayer clusters. The droplets do not coalesce due to complex aerodynamic interactions between them. The droplet cluster formation is governed by the condensation/evaporation balance and by coupling of heat flux and vapor flow with aerodynamic forces. Here, we report the observations of a reversible structural transition from the ordered hexagonal-structure cluster to the chain-like structure and provide an explanation of its mechanism and conditions under which the transition occurs. The phenomenon provides new insights on the fundamental physical and chemical processes with microdroplets including their role in reaction catalysis in nature and their potential for aerosol and microfluidic applications.
RESUMEN
Scaling laws inherent for polymer molecules are checked for the linear and branched chains constituting two-dimensional (2D) levitating microdroplet clusters condensed above the locally heated layer of water. We demonstrate that the dimensionless averaged end-to-end distance of the droplet chain r[over ¯] normalized by the averaged distance between centers of the adjacent droplets l[over ¯] scales as r[over ¯]/l[over ¯]â¼n^{0.76}, where n is the number of links in the chain, which is close to the power exponent ¾, predicted for 2D polymer chains with excluded volume in the dilution limit. The values of the dimensionless Kuhn length b[over Ì]â 2.12±0.015 and of the averaged absolute value of the bond angle of the droplet chains |θ|[over ¯]=22.0±0.5^{0} are determined. Using these values we demonstrate that the predictions of the Kramers theorem for the gyration radius of branched polymers are valid also for the branched droplets' chains. We discuss physical interactions that explain both the high value of the power exponent and the applicability of the Kramers theorem including the effects of the excluded volume, surrounding droplet monomers, and the prohibition of extreme values of the bond angle.
RESUMEN
We have determined the solution structure of ribosomal protein L18 from Thermus thermophilus. L18 is a 12.5 kDa protein of the large subunit of the ribosome and binds to both 5 S and 23 S rRNA. In the uncomplexed state L18 folds to a mixed alpha/beta globular structure with a long disordered N-terminal region. We compared our high-resolution structure with RNA-complexed L18 from Haloarcula marismortui and T. thermophilus to examine RNA-induced as well as species-dependent structural differences. We also identified T. thermophilus S11 as a structural homologue and found that the structures of the RNA-recognition sites are conserved. Important features, for instance a bulge in the RNA-contacting beta-sheet, are conserved in both proteins. We suggest that the L18 fold recognizes a specific RNA motif and that the resulting RNA-protein-recognition module is tolerant to variations in sequence.