Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Pathog ; 19(12): e1011867, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38079448

RESUMEN

The mitochondrial electron transport chain (mETC) is a series of membrane embedded enzymatic complexes critical for energy conversion and mitochondrial metabolism. In commonly studied eukaryotes, including humans and animals, complex II, also known as succinate dehydrogenase (SDH), is an essential four-subunit enzyme that acts as an entry point to the mETC, by harvesting electrons from the TCA cycle. Apicomplexa are pathogenic parasites with significant impact on human and animal health. The phylum includes Toxoplasma gondii which can cause fatal infections in immunocompromised people. Most apicomplexans, including Toxoplasma, rely on their mETC for survival, yet SDH remains largely understudied. Previous studies pointed to a divergent apicomplexan SDH with nine subunits proposed for the Toxoplasma complex, compared to four in humans. While two of the nine are homologs of the well-studied SDHA and B, the other seven have no homologs in SDHs of other systems. Moreover, SDHC and D, that anchor SDH to the membrane and participate in substrate bindings, have no homologs in Apicomplexa. Here, we validated five of the seven proposed subunits as bona fide SDH components and demonstrated their importance for SDH assembly and activity. We further find that all five subunits are important for parasite growth, and that disruption of SDH impairs mitochondrial respiration and results in spontaneous initiation of differentiation into bradyzoites. Finally, we provide evidence that the five subunits are membrane bound, consistent with their potential role in membrane anchoring, and we demonstrate that a DY motif in one of them, SDH10, is essential for complex formation and function. Our study confirms the divergent composition of Toxoplasma SDH compared to human, and starts exploring the role of the lineage-specific subunits in SDH function, paving the way for future mechanistic studies.


Asunto(s)
Succinato Deshidrogenasa , Toxoplasma , Animales , Humanos , Succinato Deshidrogenasa/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Ciclo del Ácido Cítrico
2.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523684

RESUMEN

The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Toxoplasma , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas , Toxoplasma/genética , Toxoplasma/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
3.
PLoS Pathog ; 17(3): e1009301, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651838

RESUMEN

The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.


Asunto(s)
Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Toxoplasma/metabolismo , Animales , Humanos , Parásitos/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Toxoplasmosis/metabolismo
4.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054895

RESUMEN

Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.


Asunto(s)
Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Purinonas/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Fibroblastos , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Transporte de Nucleósidos/genética , Nucleósidos/química , Filogenia , Unión Proteica , Purinonas/química , Toxoplasma/clasificación
5.
PLoS Pathog ; 15(4): e1007512, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947298

RESUMEN

The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.


Asunto(s)
Dinaminas/metabolismo , Fibroblastos/metabolismo , Dinámicas Mitocondriales , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Células Cultivadas , Dinaminas/genética , Fibroblastos/citología , Fibroblastos/parasitología , Humanos , Proteínas Protozoarias/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología
6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204357

RESUMEN

Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.


Asunto(s)
Alveolados/fisiología , Apicomplexa/metabolismo , Diatomeas/metabolismo , Hemo/metabolismo , Redes y Vías Metabólicas , Secuencia de Aminoácidos , Transporte Biológico , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
Mol Microbiol ; 112(4): 1235-1252, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31339607

RESUMEN

Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Animales , Proteínas Mitocondriales/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Ribosomas/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
8.
PLoS Pathog ; 14(2): e1006836, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470517

RESUMEN

Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondii apicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1's involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites.


Asunto(s)
Apicoplastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Biogénesis de Organelos , Tiorredoxinas/metabolismo , Toxoplasma/fisiología , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Secuencia Conservada , Evolución Molecular , Técnicas de Silenciamiento del Gen , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tiorredoxinas/química , Tiorredoxinas/genética , Toxoplasma/citología , Toxoplasma/crecimiento & desarrollo
9.
Biochem Soc Trans ; 47(4): 973-983, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31383817

RESUMEN

Malaria continues to be one of the leading causes of human mortality in the world, and the therapies available are insufficient for eradication. Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum Apicomplexan parasites, including the Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess an essential plastid organelle, named the apicoplast. Since humans and animals have no plastids, the apicoplast is an attractive target for drug development. Indeed, after its discovery, the apicoplast was found to host the target pathways of some known antimalarial drugs, which motivated efforts for further research into its biological functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 'delayed death', whereby parasite killing is seen only at the end of one invasion-egress cycle. This slow action is not in line with the current standard for antimalarials, which seeded scepticism about the potential of compounds targeting apicoplast functions as good candidates for drug development. Intriguingly, recent evidence of apicoplast inhibitors causing rapid killing could put this organelle back in the spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, alongside recent findings in apicoplast biology that may provide new avenues for drug development.


Asunto(s)
Antimaláricos/farmacología , Apicoplastos/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Animales , Apicoplastos/metabolismo , Humanos , Malaria/parasitología , Oxidación-Reducción , Plasmodium/metabolismo
10.
Traffic ; 16(12): 1254-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26381927

RESUMEN

Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist. As a result the apicoplast is surrounded by four membranes. This complex structure necessitates a system of transport signals and translocons allowing nuclear encoded proteins to find their way to specific apicoplast sub-compartments. Previous studies identified translocons traversing two of the four apicoplast membranes. Here we provide functional support for the role of an apicomplexan Toc75 homolog in apicoplast protein transport. We identify two apicomplexan genes encoding Toc75 and Sam50, both members of the Omp85 protein family. We localize the respective proteins to the apicoplast and the mitochondrion of Toxoplasma and Plasmodium. We show that the Toxoplasma Toc75 is essential for parasite growth and that its depletion results in a rapid defect in the import of apicoplast stromal proteins while the import of proteins of the outer compartments is affected only as the secondary consequence of organelle loss. These observations along with the homology to Toc75 suggest a potential role in transport through the second innermost membrane.


Asunto(s)
Apicoplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Apicomplexa/genética , Apicomplexa/metabolismo , Apicoplastos/genética , Eritrocitos/parasitología , Fibroblastos/parasitología , Proteínas Fluorescentes Verdes , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Fenilalanina/genética , Filogenia , Transporte de Proteínas , Proteínas Protozoarias/genética , Toxoplasma/genética
11.
Cell Microbiol ; 17(4): 559-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25329540

RESUMEN

Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P-binding proteins and identified in total six PX and FYVE domain-containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2 . Although depletion of putative PI(3)P-binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2 . Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.


Asunto(s)
Apicoplastos/metabolismo , Apicoplastos/ultraestructura , Homeostasis , Metabolismo de los Lípidos , Fosfatidilinositol 3-Quinasa/metabolismo , Toxoplasma/enzimología , Toxoplasma/metabolismo , Técnicas de Silenciamiento del Gen , Fosfatidilinositol 3-Quinasa/genética , Toxoplasma/genética , Toxoplasma/ultraestructura
12.
PLoS Biol ; 10(12): e1001444, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23239939

RESUMEN

Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA) polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC). Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.


Asunto(s)
División Celular , Eucariontes/metabolismo , Flagelos/metabolismo , Parásitos/citología , Toxoplasma/citología , Animales , Polaridad Celular , Centrosoma/metabolismo , Flagelos/ultraestructura , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Modelos Biológicos , Parásitos/ultraestructura , Proteínas Protozoarias/metabolismo , Toxoplasma/ultraestructura
13.
Biochim Biophys Acta ; 1833(2): 352-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22683761

RESUMEN

Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.


Asunto(s)
Plastidios/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Plastidios/genética , Proteínas/genética
14.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456969

RESUMEN

Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.


Asunto(s)
Núcleo Celular , Mitocondrias , Toxoplasma , Células Eucariotas , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Asociadas a Mitocondrias , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Toxoplasma/citología , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Protozoarias/metabolismo
15.
J Biol Chem ; 287(20): 16289-99, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22451671

RESUMEN

The obligate intracellular and promiscuous protozoan parasite Toxoplasma gondii needs an extensive membrane biogenesis that must be satisfied irrespective of its host-cell milieu. We show that the synthesis of the major lipid in T. gondii, phosphatidylcholine (PtdCho), is initiated by a novel choline kinase (TgCK). Full-length (∼70-kDa) TgCK displayed a low affinity for choline (K(m) ∼0.77 mM) and harbors a unique N-terminal hydrophobic peptide that is required for the formation of enzyme oligomers in the parasite cytosol but not for activity. Conditional mutagenesis of the TgCK gene in T. gondii attenuated the protein level by ∼60%, which was abolished in the off state of the mutant (Δtgck(i)). Unexpectedly, the mutant was not impaired in its growth and exhibited a normal PtdCho biogenesis. The parasite compensated for the loss of full-length TgCK by two potential 53- and 44-kDa isoforms expressed through a cryptic promoter identified within exon 1. TgCK-Exon1 alone was sufficient in driving the expression of GFP in E. coli. The presence of a cryptic promoter correlated with the persistent enzyme activity, PtdCho synthesis, and susceptibility of T. gondii to a choline analog, dimethylethanolamine. Quite notably, the mutant displayed a regular growth in the off state despite a 35% decline in PtdCho content and lipid synthesis, suggesting a compositional flexibility in the membranes of the parasite. The observed plasticity of gene expression and membrane biogenesis can ensure a faithful replication and adaptation of T. gondii in disparate host or nutrient environments.


Asunto(s)
Colina Quinasa/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Mutagénesis , Fosfatidilcolinas/biosíntesis , Proteínas Protozoarias/biosíntesis , Toxoplasma/enzimología , Secuencia de Bases , Colina Quinasa/genética , Deanol/metabolismo , Datos de Secuencia Molecular , Mutación , Fosfatidilcolinas/genética , Multimerización de Proteína/fisiología , Proteínas Protozoarias/genética , Toxoplasma/genética
16.
PLoS Pathog ; 7(12): e1002392, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144892

RESUMEN

Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes--a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle.


Asunto(s)
Apicomplexa/genética , Plastidios/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Protozoario/genética , Apicomplexa/metabolismo , Apicomplexa/patogenicidad , Ciclo Celular/fisiología , Plastidios/metabolismo , Transporte de Proteínas/genética , Proteínas Protozoarias/metabolismo , ARN Mensajero/biosíntesis , ARN Protozoario/biosíntesis
17.
Front Cell Infect Microbiol ; 13: 1320160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162577

RESUMEN

Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P > 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2'-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2'-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/metabolismo , Cinética , Uracilo/farmacología , Uracilo/metabolismo , Uridina/farmacología , Uridina/metabolismo , Timidina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Toxoplasmosis/tratamiento farmacológico , Desoxiuridina/metabolismo , Sulfadiazina/metabolismo
18.
Microorganisms ; 10(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35630308

RESUMEN

Mitochondrial ribosomes are fundamental to mitochondrial function, and thus survival, of nearly all eukaryotes. Despite their common ancestry, mitoribosomes have evolved divergent features in different eukaryotic lineages. In apicomplexans, the mitochondrial rRNA is extremely fragmented raising questions about its evolution, protein composition and structure. Apicomplexan mitochondrial translation and the mitoribosomes are essential in all parasites and life stages studied, highlighting mitoribosomes as a promising target for drugs. Still, the apicomplexan mitoribosome is understudied, with one of the obstacles being that its composition is unknown. Here, to facilitate the study of apicomplexan mitoribosomes, we identified and validated components of the mitoribosomal large subunit in the model apicomplexan Toxoplasma gondii.

19.
Contact (Thousand Oaks) ; 5: 25152564221096217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338149

RESUMEN

Membrane contact sites (MCS) are critical for cellular functions of eukaryotes, as they enable communication and exchange between organelles. Research over the last decade unravelled the function and composition of MCS between a variety of organelles including mitochondria, ER, plasma membrane, lysosomes, lipid droplets, peroxisome and endosome, to name a few. In fact, MCS are found between any pair of organelles studied to date, with common functions including lipid exchange, calcium signalling and organelle positioning in the cell. Work in the past year has started addressing the composition and function of nuclear-mitochondrial MCS. Tether components mediating these contacts in yeast have been identified via comprehensive phenotypic screens, which also revealed a possible link between this contact and phosphatidylcholine metabolism. In human cells, and in the protozoan parasites causing malaria, proximity between these organelles is proposed to promote cell survival via a mitochondrial retrograde response. These pioneering studies should inspire the field to explore what cellular processes depend on the exchange between the nucleus and the mitochondrion, given that they play such central roles in cell biology.

20.
Curr Opin Cell Biol ; 76: 102085, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569259

RESUMEN

Integral membrane protein complexes control key cellular functions in eukaryotes by defining membrane-bound spaces within organelles and mediating inter-organelles contacts. Despite the critical role of membrane complexes in cell biology, most of our knowledge is from a handful of model systems, primarily yeast and mammals, while a full functional and evolutionary understanding remains incomplete without the perspective from a broad range of divergent organisms. Apicomplexan parasites are single-cell eukaryotes whose survival depends on organelle compartmentalisation and communication. Studies of a model apicomplexan, Toxoplasma gondii, reveal unexpected divergence in the composition and function of complexes previously considered broadly conserved, such as the mitochondrial ATP synthase and the tethers mediating ER-mitochondria membrane contact sites. Thus, Toxoplasma joins the repertoire of divergent model eukaryotes whose research completes our understanding of fundamental cell biology.


Asunto(s)
Toxoplasma , Animales , Eucariontes/metabolismo , Mamíferos/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA