RESUMEN
Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereas polyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced protein adsorption; however, the constrained segmental dynamics leads to the deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa.
Asunto(s)
Antibacterianos/química , Cobre/química , Éteres/química , Nanopartículas del Metal/química , Polímeros/química , Adsorción , Antibacterianos/administración & dosificación , Cobre/administración & dosificación , Éteres/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanocompuestos/administración & dosificación , Nanocompuestos/química , Polímeros/administración & dosificación , Pseudomonas aeruginosa/efectos de los fármacos , Albúmina Sérica Bovina/químicaRESUMEN
In this work, we demonstrate, for the first time, the possibility to fabricate indium tin oxide nanoparticles (ITO NPs) using a gas aggregation cluster source. A stable and reproducible deposition rate of ITO NPs has been achieved using magnetron sputtering of an In2O3/SnO2 target (90/10 wt %) at an elevated pressure of argon. Remarkably, most of the generated NPs possess a crystalline structure identical to the original target material, which, in combination with their average size of 17 nm, resulted in a localized surface plasmon resonance peak at 1580 nm in the near-infrared region.
RESUMEN
Polymer nanoparticles (NPs) can be highly attractive in numerous applications, including biomedicine, where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low-temperature plasma-based synthesis of carboxylated NPs produced by the polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, the strong fragmentation of monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of carboxyl groups that reaches 16%. All types of NPs exhibit a glass transition above room temperature, which makes them highly stable in an aqueous environment with no dissolution or swelling. The NPs are also found to degrade thermally when heated above 150 °C, with a decrease in the mean NP size but with retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with a tunable size distribution, chemical composition, and physical properties.
Asunto(s)
Acrilatos/química , Resinas Acrílicas/química , Nanopartículas/química , Gases em Plasma/química , Resinas Acrílicas/síntesis química , Tamaño de la Partícula , PolimerizacionRESUMEN
Magnetron sputtering is a well-known technique that is commonly used for the deposition of thin compact films. However, as was shown in the 1990s, when sputtering is performed at pressures high enough to trigger volume nucleation/condensation of the supersaturated vapor generated by the magnetron, various kinds of nanoparticles may also be produced. This finding gave rise to the rapid development of magnetron-based gas aggregation sources. Such systems were successfully used for the production of single material nanoparticles from metals, metal oxides, and plasma polymers. In addition, the growing interest in multi-component heterogeneous nanoparticles has led to the design of novel systems for the gas-phase synthesis of such nanomaterials, including metal/plasma polymer nanoparticles. In this featured article, we briefly summarized the principles of the basis of gas-phase nanoparticles production and highlighted recent progress made in the field of the fabrication of multi-component nanoparticles. We then introduced a gas aggregation source of plasma polymer nanoparticles that utilized radio frequency magnetron sputtering of a polymeric target with an emphasis on the key features of this kind of source. Finally, we presented and discussed three strategies suitable for the generation of metal/plasma polymer multi-core@shell or core-satellite nanoparticles: the use of composite targets, a multi-magnetron approach, and in-flight coating of plasma polymer nanoparticles by metal.
RESUMEN
Carboxyl-enriched and size-selected polymer nanoparticles (NPs) may prove to be very useful in biomedical applications for linker-free binding of biomolecules and their transport to cells. In this study, we report about the synthesis of such NPs by low-pressure low-temperature pulsed plasma polymerization of acrylic acid. Gas aggregation cluster source was adapted to operate plasma with a constant pulse period of 50 µs and with varying duty cycle. The NPs were produced with the size ranging from 31 ± 5 to 93 ± 14 nm and with retention of the carboxyl groups ranging from 4.0 to 12.0 atom %. Two regimes of the NP formation were identified. In the large duty cycle regime, the NP growth was interfered with by positive ion bombardment which resulted in the ion-driven detachment of the carboxyl species and in the formation of carboxyl-deficient NPs. In the small duty cycle regime, the NP growth was accompanied by the radical-driven chain propagation with the attachment of intact monomer molecules. Improved efficacy of the monomer retention resulted in increased concentration of the carboxyl groups.
RESUMEN
Magnetron discharge in a cold buffer gas represents a liquid-free approach to the synthesis of metal nanoparticles (NPs) with tailored structure, chemical composition and size. Despite a large number of metal NPs that were successfully produced by this method, the knowledge of the mechanisms of their nucleation and growth in the discharge is still limited, mainly because of the lack of in situ experimental data. In this work, we present the results of in situ Small Angle X-ray Scattering measurements performed in the vicinity of a Cu magnetron target with Ar used as a buffer gas. Condensation of atomic metal vapours is found to occur mainly at several mm distance from the target plane. The NPs are found to be captured preferentially within a region circumscribed by the magnetron plasma ring. In this capture zone, the NPs grow to the size of 90 nm whereas smaller ones sized 10-20 nm may escape and constitute a NP beam. Time-resolved measurements of the discharge indicate that the electrostatic force acting on the charged NPs may be largely responsible for their capturing nearby the magnetron.
RESUMEN
Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.
RESUMEN
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.