Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557048

RESUMEN

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

2.
Langmuir ; 39(34): 12166-12173, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37584281

RESUMEN

Understanding the dynamical behaviors of two-dimensional (2D) macromolecules is of fundamental importance for the precise modulation of their assembled structures and material performances. However, considerably less is known about how discrete macromolecular sheets aggregate into extended macroscopic assemblies in solutions. The absence of a quantitative description of the assembly process limits the precise structural control of assemblies. Here, we investigated the aggregation thermodynamic transition and kinetic behavior of 2D macromolecules in the model of single layer graphene oxide (GO). Combining Flory-Huggins theory with experimental observations, we unveiled the critical thermodynamic transition of GO to correlate with the solvent property. We proposed a theoretical falling-leaf model to quantitatively describe the kinetic aggregation process of 2D GO sheets. Experimental analysis validated the theoretical prediction that the thickness of GO aggregates has a power law relation with the poor solvent content. Our work provides a fundamental understanding of phase separation of 2D macromolecules and offers an insight into modulating the aggregated structures of their assembled materials.

3.
BMJ Open ; 14(3): e075748, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508630

RESUMEN

INTRODUCTION: Neck pain is a global health problem that can cause severe disability and a huge medical burden. Clinical practice guideline (CPG) is an important basis for clinical diagnosis and treatment. A high-quality CPG plays a significant role in clinical practice. However, the quality of the CPGs for neck pain lacks comprehensive assessment. This protocol aims to evaluate the methodological, recommendation, reporting quality of global CPGs for neck pain and identify key recommendations and gaps that limit evidence-based practice. METHOD: CPGs from January 2013 to November 2023 will be identified through a systematic search on 13 scientific databases (PubMed, Cochrane Library, Embase, etc) and 7 online guideline repositories. Six reviewers will independently evaluate the quality of CPGs for neck pain by using the Appraisal of Guidelines for Research and Evaluation, the Appraisal of Guidelines Research and Evaluation-Recommendations Excellence and the Reporting Items for Practice Guidelines in Healthcare tools. Intraclass correlation coefficient will be used to test the consistency of the assessment. We will identify the distribution of evidence and recommendations in each evidence-based CPGs for neck pain and regrade the level of evidence and strength of recommendations by adopting the commonly used Grading of Recommendations, Assessment, Development and Evaluations system. The key recommendations based on high-quality evidence will be summarised. In addition, we will categorise CPGs by different characteristics and conduct a subgroup analysis of the results of assessment. ETHICS AND DISSEMINATION: No subjects will be involved in this systematic review, so there is no need for ethical approval. The finding of this review will be summarised as a paper for publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023417717.


Asunto(s)
Atención a la Salud , Dolor de Cuello , Humanos , Dolor de Cuello/diagnóstico , Dolor de Cuello/terapia , Revisiones Sistemáticas como Asunto , Bases de Datos Factuales , Práctica Clínica Basada en la Evidencia , Literatura de Revisión como Asunto
4.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38764119

RESUMEN

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratones Endogámicos C57BL , Neuronas , Animales , Masculino , Ratones , Neuronas/metabolismo , Corteza Sensoriomotora/metabolismo , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Corteza Motora/metabolismo , Corteza Somatosensorial/metabolismo
5.
Environ Sci Pollut Res Int ; 29(18): 26214-26229, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34851485

RESUMEN

The Pan-Third Pole (PTP) region, which encompasses the Eurasian highlands and their surroundings, has experienced unprecedented, accelerated warming during the past decades. This study evaluates the performance of historical simulation runs of the Coupled Model Intercomparison Project (CMIP6) in capturing spatial patterns and temporal variations observed over the PTP region for mean and extreme temperatures. In addition, projected changes in temperatures under four Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are also reported. Four indices were used to characterize changes in temperature extremes: the annual maximum value of daily maximum temperature (TXx), the annual minimum value of daily minimum temperature (TNn), and indices for the percentage of warm days (TX90p) and warm nights (TN90p). Results indicate that most CMIP6 models generally capture the characteristics of the observed mean and extreme temperatures over the PTP region, but there still are slight cold biases in the Tibetan Plateau. Future changes of mean and extreme temperatures demonstrate that a strong increase will occur for the entire PTP region during the twenty-first century under all four SSP scenarios. Between 2015 and 2099, ensemble area-averaged annual mean temperatures are projected to increase by 1.24 °C/100 year, 3.28 °C/100 year, 5.57 °C/100 year, and 7.40 °C/100 year for the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. For TXx and TNn, the most intense warming is projected in Central Asia. The greatest number of projected TX90p and TN90p will occur in the Southeast Asia and Tibetan Plateau, respectively.


Asunto(s)
Cambio Climático , Calor , Frío , Predicción , Temperatura
6.
Geohealth ; 5(5): e2021GH000390, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34027262

RESUMEN

Compound climate extremes, such as events with concurrent temperature and precipitation extremes, have significant impacts on the health of humans and ecosystems. This paper aims to analyze temporal and spatial characteristics of compound extremes of monthly temperature and precipitation, evaluate the performance of the sixth phase of the Coupled Model Intercomparison Project (CMIP6) models in simulating compound extremes, and investigate their future changes under Shared Socioeconomic Pathways (SSPs). The results show a significant increase in the frequency of compound warm extremes (warm/dry and warm/wet) but a decrease in compound cold extremes (cold/dry and cold/wet) during 1985-2014 relative to 1955-1984. The observed upward trends of compound warm extremes over China are much higher than those worldwide during the period of interest. A multi-model ensemble (MME) of CMIP6 models performs well in simulating temporal changes of warm/wet extremes, and temporal correlation coefficients between MME and observations are above 0.86. Under future scenarios, CMIP6 simulations show substantial rises in compound warm extremes and declines in compound cold extremes. Globally, the average frequency of warm/wet extremes over a 30-yr period is projected to increase for 2070-2099 relative to 1985-2014 by 18.53, 34.15, 48.79, and 59.60 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. Inter-model uncertainties for the frequencies of compound warm extremes are considerably higher than those of compound cold extremes. The projected uncertainties in the global occurrences of warm/wet extremes are 3.82 times those of warm/dry extremes during 2070-2099 and especially high for the Amazon and the Tibetan Plateau.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA