RESUMEN
Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and ß2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.
Asunto(s)
Complejo 2 de Proteína Adaptadora , Chaperonas Moleculares , Complejo 2 de Proteína Adaptadora/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Unión Proteica , Endocitosis/fisiología , Transporte de ProteínasRESUMEN
Assembly of protein complexes is facilitated by assembly chaperones. Alpha and gamma adaptin-binding protein (AAGAB) is a chaperone governing the assembly of the heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) involved in clathrin-mediated membrane trafficking. Here, we found that before AP1/2 binding, AAGAB exists as a homodimer. AAGAB dimerization is mediated by its C-terminal domain (CTD), which is critical for AAGAB stability and is missing in mutant proteins found in patients with the skin disease punctate palmoplantar keratoderma type 1 (PPKP1). We solved the crystal structure of the dimerization-mediating CTD, revealing an antiparallel dimer of bent helices. Interestingly, AAGAB uses the same CTD to recognize and stabilize the γ subunit in the AP1 complex and the α subunit in the AP2 complex, forming binary complexes containing only one copy of AAGAB. These findings demonstrate a dual role of CTD in stabilizing resting AAGAB and binding to substrates, providing a molecular explanation for disease-causing AAGAB mutations. The oligomerization state transition mechanism may also underlie the functions of other assembly chaperones.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Queratodermia Palmoplantar , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/genética , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Clatrina/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismoRESUMEN
Multimeric cargo adaptors such as AP2 play central roles in intracellular membrane trafficking. We recently discovered that the assembly of the AP2 adaptor complex, a key player in clathrin-mediated endocytosis, is a highly organized process controlled by alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34). In this study, we demonstrate that besides AP2, AAGAB also regulates the assembly of AP1, a cargo adaptor involved in clathrin-mediated transport between the trans-Golgi network and the endosome. However, AAGAB is not involved in the formation of other adaptor complexes, including AP3. AAGAB promotes AP1 assembly by binding and stabilizing the γ and σ subunits of AP1, and its mutation abolishes AP1 assembly and disrupts AP1-mediated cargo trafficking. Comparative proteomic analyses indicate that AAGAB mutation massively alters surface protein homeostasis, and its loss-of-function phenotypes reflect the synergistic effects of AP1 and AP2 deficiency. Taken together, these findings establish AAGAB as an assembly chaperone for both AP1 and AP2 adaptors and pave the way for understanding the pathogenesis of AAGAB-linked diseases.
Asunto(s)
Complejo 2 de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Complejo 1 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Clatrina/genética , Endocitosis , ProteómicaRESUMEN
Cell-to-cell transmission of misfolding-prone α-synuclein (α-Syn) has emerged as a key pathological event in Parkinson's disease. This process is initiated when α-Syn-bearing fibrils enter cells via clathrin-mediated endocytosis, but the underlying mechanisms are unclear. Using a CRISPR-mediated knockout screen, we identify SLC35B2 and myosin-7B (MYO7B) as critical endocytosis regulators for α-Syn preformed fibrils (PFFs). We show that SLC35B2, as a key regulator of heparan sulfate proteoglycan (HSPG) biosynthesis, is essential for recruiting α-Syn PFFs to the cell surface because this process is mediated by interactions between negatively charged sugar moieties of HSPGs and clustered K-T-K motifs in α-Syn PFFs. By contrast, MYO7B regulates α-Syn PFF cell entry by maintaining a plasma membrane-associated actin network that controls membrane dynamics. Without MYO7B or actin filaments, many clathrin-coated pits fail to be severed from the membrane, causing accumulation of large clathrin-containing "scars" on the cell surface. Intriguingly, the requirement for MYO7B in endocytosis is restricted to α-Syn PFFs and other polycation-bearing cargos that enter cells via HSPGs. Thus, our study not only defines regulatory factors for α-Syn PFF endocytosis, but also reveals a previously unknown endocytosis mechanism for HSPG-binding cargos in general, which requires forces generated by MYO7B and actin filaments.
Asunto(s)
Endocitosis/fisiología , Miosinas/química , Miosinas/metabolismo , Polielectrolitos/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Clatrina/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Conformación Proteica , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismoRESUMEN
Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.
Asunto(s)
Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina , Proteínas del Tejido Nervioso/fisiología , Proteínas R-SNARE/fisiología , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Insulina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Proteínas R-SNARE/genéticaRESUMEN
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Animales , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Macrófagos/microbiología , Lípidos de la Membrana , Ratones , Ratones Endogámicos C57BLAsunto(s)
Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte de Proteínas , Fusión de Membrana , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze membrane fusion by forming coiled-coil bundles between membrane bilayers. The SNARE bundle zippers progressively toward the membranes, pulling the lipid bilayers into close proximity to fuse. In this work, we found that the +1 and +2 layers in the C-terminal domains (CTDs) of SNAREs are dispensable for reconstituted SNARE-mediated fusion reactions. By contrast, all CTD layers are required for fusion reactions activated by the cognate Sec1/Munc18 (SM) protein or a synthetic Vc peptide derived from the vesicular (v-) SNARE, correlating with strong acceleration of fusion kinetics. These results suggest a similar mechanism underlying the stimulatory functions of SM proteins and Vc peptide in SNARE-dependent membrane fusion. Unexpectedly, we identified a conserved SNARE-like peptide (SLP) in SM proteins that structurally and functionally resembles Vc peptide. Like Vc peptide, SLP binds and activates target (t-) SNAREs, accelerating the fusion reaction. Disruption of the t-SNARE-SLP interaction inhibits exocytosis in vivo. Our findings demonstrated that a t-SNARE-SLP intermediate must form before SNAREs can drive efficient vesicle fusion.
Asunto(s)
Exocitosis/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Proteínas Munc18 , Péptidos , Proteínas SNARE , Animales , Células COS , Chlorocebus aethiops , Cinética , Ratones , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Péptidos/química , Péptidos/farmacología , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismoRESUMEN
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Asunto(s)
Exocitosis/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Transporte Vesicular/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Edición Génica , Células HeLa , Humanos , Ratones , Transducción de Señal , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/metabolismoRESUMEN
We propose a filterless full-duplex radio-over-fiber system based on polarization multiplexing and demonstrate the generation of an 80 GHz millimeter wave using two Mach-Zehnder modulators. By adjusting the polarization direction, we could generate an 80 GHz frequency millimeter-wave signal and restore the original pure light carrier, providing a light source for the uplink. The simulation results show that the 80 GHz millimeter-wave signal was obtained with a 23.48 dB radio-frequency sideband suppression ratio. Furthermore, we showed that the proposed scheme is relatively flexible and free from the limitation of filter fixed bandwidth in addition to being simple and economical.
RESUMEN
Rab GTPases are switched from their GDP-bound inactive conformation to a GTP-bound active state by guanine nucleotide exchange factors (GEFs). The first putative GEFs isolated for Rabs are RABIF (Rab-interacting factor)/MSS4 (mammalian suppressor of Sec4) and its yeast homolog DSS4 (dominant suppressor of Sec4). However, the biological function and molecular mechanism of these molecules remained unclear. In a genome-wide CRISPR genetic screen, we isolated RABIF as a positive regulator of exocytosis. Knockout of RABIF severely impaired insulin-stimulated GLUT4 exocytosis in adipocytes. Unexpectedly, we discovered that RABIF does not function as a GEF, as previously assumed. Instead, RABIF promotes the stability of Rab10, a key Rab in GLUT4 exocytosis. In the absence of RABIF, Rab10 can be efficiently synthesized but is rapidly degraded by the proteasome, leading to exocytosis defects. Strikingly, restoration of Rab10 expression rescues exocytosis defects, bypassing the requirement for RABIF. These findings reveal a crucial role of RABIF in vesicle transport and establish RABIF as a Rab-stabilizing holdase chaperone, a previously unrecognized mode of Rab regulation independent of its GDP-releasing activity. Besides Rab10, RABIF also regulates the stability of two other Rab GTPases, Rab8 and Rab13, suggesting that the requirement of holdase chaperones is likely a general feature of Rab GTPases.
Asunto(s)
Exocitosis/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Chaperonas Moleculares/metabolismo , Transporte de Proteínas/fisiología , Adipocitos/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Vesículas Transportadoras/fisiología , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Sec1/Munc18 (SM) proteins promote intracellular vesicle fusion by binding to N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A key SNARE-binding mode of SM proteins involves the N-terminal peptide (N-peptide) motif of syntaxin, a SNARE subunit localized to the target membrane. In in vitro membrane fusion assays, inhibition of N-peptide motif binding previously has been shown to abrogate the stimulatory function of Munc18-1, a SM protein involved in synaptic exocytosis in neurons. The physiological role of the N-peptide-binding mode, however, remains unclear. In this work, we addressed this key question using a "clogged" Munc18-1 protein, in which an ectopic copy of the syntaxin N-peptide motif was directly fused to Munc18-1. We found that the ectopic N-peptide motif blocks the N-peptide-binding pocket of Munc18-1, preventing the latter from binding to the native N-peptide motif on syntaxin-1. In a reconstituted system, we observed that clogged Munc18-1 is defective in promoting SNARE zippering. When introduced into induced neuronal cells (iN cells) derived from human pluripotent stem cells, clogged Munc18-1 failed to mediate synaptic exocytosis. As a result, both spontaneous and evoked synaptic transmission was abolished. These genetic findings provide direct evidence for the crucial role of the N-peptide-binding mode of Munc18-1 in synaptic exocytosis. We suggest that clogged SM proteins will also be instrumental in defining the physiological roles of the N-peptide-binding mode in other vesicle-fusion pathways.
Asunto(s)
Exocitosis , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Péptidos/metabolismo , Sinapsis/metabolismo , Secuencias de Aminoácidos , Humanos , Proteínas Munc18/genética , Neuronas/química , Neuronas/metabolismo , Péptidos/química , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Sinapsis/química , Sinapsis/genética , Transmisión Sináptica , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismoRESUMEN
Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.
Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos/fisiología , Sinaptotagminas/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calcio/química , Membrana Celular/química , Retículo Endoplásmico/química , Sinaptotagminas/químicaRESUMEN
The thermal cycling process experienced by spacecraft during orbital operation would lead to deterioration of the demodulation performance of fiber Bragg grating (FBG). A new demodulation method based on Fabry-Perot (F-P) filter and hydrogen cyanide (HCN) gas is proposed to improve the performance. The method skillfully utilizes the self-marked HCN absorption lines as absolute wavelength references. In the thermal cycling environment whose temperature ranging from 5°Cto 65°C,the fluctuation of demodulation wavelength reduces to ± 2.6 pm, which is improved by 3.1 times compared with traditional method. The proposed method also shows a good robustness in the cases of weak light source intensity and poor signal-to-noise ratio (SNR) of HCN spectrum.
RESUMEN
The Chinese space station is designed to carry out manned spaceflight, space science research, and so on. In serious applications, it is a common operation to inject gas into the hull, which can produce strain of the bulkhead. Accurate measurement of strain for the bulkhead is one of the key tasks in evaluating the health condition of the space station. This is the first work to perform strain detection for the Chinese space station bulkhead by using optical fiber Bragg grating. In the period of measurements, the resistance strain gauge is used as the strain standard. The measurement error of the fiber optical sensor in the circumferential direction is very small, being less than 4.52 µÎµ. However, the error in the axial direction is very large with the highest value of 28.93 µÎµ. Because the measurement error of bare fiber in the axial direction is very small, the transverse effect of the substrate of the fiber optical sensor likely plays a role. The comparison of the theoretical and experimental results of the transverse effect coefficients shows that they are fairly consistent, with values of 0.0271 and 0.0287, respectively. After the transverse effect is compensated, the strain deviation in the axial detection is smaller than 2.04 µÎµ. It is of great significance to carry out real-time health assessment for the bulkhead of the space station.
RESUMEN
Sec1/Munc18 (SM) family proteins are essential for every vesicle fusion pathway. The best-characterized SM protein is the synaptic factor Munc18-1, but it remains unclear whether its functions represent conserved mechanisms of SM proteins or specialized activities in neurotransmitter release. To address this question, we dissected Munc18c, a functionally distinct SM protein involved in nonsynaptic exocytic pathways. We discovered that Munc18c binds to the trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and strongly accelerates the fusion rate. Further analysis suggests that Munc18c recognizes both vesicle-rooted SNARE and target membrane-associated SNAREs, and promotes trans-SNARE zippering at the postdocking stage of the fusion reaction. The stimulation of fusion by Munc18c is specific to its cognate SNARE isoforms. Because Munc18-1 regulates fusion in a similar manner, we conclude that one conserved function of SM proteins is to bind their cognate trans-SNARE complexes and accelerate fusion kinetics. Munc18c also binds syntaxin-4 monomer but does not block target membrane-associated SNARE assembly, in agreement with our observation that six- to eightfold increases in Munc18c expression do not inhibit insulin-stimulated glucose uptake in adipocytes. Thus, the inhibitory "closed" syntaxin binding mode demonstrated for Munc18-1 is not conserved in Munc18c. Unexpectedly, we found that Munc18c recognizes the N-terminal region of the vesicle-rooted SNARE, whereas Munc18-1 requires the C-terminal sequences, suggesting that the architecture of the SNARE/SM complex likely differs across fusion pathways. Together, these comparative studies of two distinct SM proteins reveal conserved as well as divergent mechanisms of SM family proteins in intracellular vesicle fusion.
Asunto(s)
Proteínas Munc18/química , Exocitosis , Cinética , Fusión de Membrana , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas SNARE/metabolismoRESUMEN
Tomosyn negatively regulates SNARE-dependent exocytic pathways including insulin secretion, GLUT4 exocytosis, and neurotransmitter release. The molecular mechanism of tomosyn, however, has not been fully elucidated. Here, we reconstituted SNARE-dependent fusion reactions in vitro to recapitulate the tomosyn-regulated exocytic pathways. We then expressed and purified active full-length tomosyn and examined how it regulates the reconstituted SNARE-dependent fusion reactions. Using these defined fusion assays, we demonstrated that tomosyn negatively regulates SNARE-mediated membrane fusion by inhibiting the assembly of the ternary SNARE complex. Tomosyn recognizes the t-SNARE complex and prevents its pairing with the v-SNARE, therefore arresting the fusion reaction at a pre-docking stage. The inhibitory function of tomosyn is mediated by its C-terminal domain (CTD) that contains an R-SNARE-like motif, confirming previous studies carried out using truncated tomosyn fragments. Interestingly, the N-terminal domain (NTD) of tomosyn is critical (but not sufficient) to the binding of tomosyn to the syntaxin monomer, indicating that full-length tomosyn possesses unique features not found in the widely studied CTD fragment. Finally, we showed that the inhibitory function of tomosyn is dominant over the stimulatory activity of the Sec1/Munc18 protein in fusion. We suggest that tomosyn uses its CTD to arrest SNARE-dependent fusion reactions, whereas its NTD is required for the recruitment of tomosyn to vesicle fusion sites through syntaxin interaction.
Asunto(s)
Membrana Celular/metabolismo , Exocitosis/genética , Fusión de Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas R-SNARE/metabolismo , Animales , Membrana Celular/química , Etilmaleimida/química , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas del Tejido Nervioso/química , Células PC12 , Mapas de Interacción de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/química , Ratas , Proteínas SNARE/genética , Transmisión Sináptica/genéticaRESUMEN
Intracellular vesicle fusion is mediated by SNAREs and Sec1/Munc18 (SM) proteins. Despite intensive efforts, the SNARE-SM mediated vesicle fusion reaction has not been faithfully reconstituted in biochemical assays. Here, we present an unexpected discovery that macromolecular crowding is required for reconstituting the vesicle fusion reaction in vitro. Macromolecular crowding is known to profoundly influence the kinetic and thermodynamic behaviors of macromolecules, but its role in membrane transport processes such as vesicle fusion remains unexplored. We introduced macromolecular crowding agents into reconstituted fusion reactions to mimic the crowded cellular environment. In this crowded assay, SNAREs and SM proteins acted in concert to drive efficient membrane fusion. In uncrowded assays, by contrast, SM proteins failed to associate with the SNAREs and the fusion rate decreased more than 30-fold, close to undetectable levels. The activities of SM proteins were strictly specific to their cognate SNARE isoforms and sensitive to biologically relevant mutations, further supporting that the crowded fusion assay accurately recapitulates the vesicle fusion reaction. Using this crowded fusion assay, we also showed that the SNARE-SM mediated fusion reaction can be modulated by two additional factors: NSF and α-SNAP. These findings suggest that the vesicle fusion machinery likely has been evolutionarily selected to function optimally in the crowded milieu of the cell. Accordingly, macromolecular crowding should constitute an integral element of any reconstituted fusion assay.
Asunto(s)
Sustancias Macromoleculares/química , Animales , Animales Recién Nacidos , Ratones , Proteínas Munc18/química , TermodinámicaRESUMEN
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.
Asunto(s)
Membrana Celular/metabolismo , Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insectos , Membrana Dobles de Lípidos/química , Liposomas/metabolismo , Ratones , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes/metabolismoRESUMEN
Intracellular membrane fusion is mediated by the concerted action of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. During fusion, SM proteins bind the N-terminal peptide (N-peptide) motif of the SNARE subunit syntaxin, but the function of this interaction is unknown. Here, using FRET-based biochemical reconstitution and Caenorhabditis elegans genetics, we show that the N-peptide of syntaxin-1 recruits the SM protein Munc18-1/nSec1 to the SNARE bundle, facilitating their assembly into a fusion-competent complex. The recruitment is achieved through physical tethering rather than allosteric activation of Munc18-1. Consistent with the recruitment role, the N-peptide is not spatially constrained along syntaxin-1, and it is functional when translocated to another SNARE subunit SNAP-25 or even when simply anchored in the target membrane. The N-peptide function is restricted to an early initiation stage of the fusion reaction. After association, Munc18-1 and the SNARE bundle together drive membrane merging without further involving the N-peptide. Thus, the syntaxin N-peptide is an initiation factor for the assembly of the SNARE-SM membrane fusion complex.