Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Cell Res ; 374(1): 181-188, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508513

RESUMEN

Cisplatin-resistant (A549CisR and H292CisR) and radioresistant (A549R26 and H292R22) sub-line non-small cell lung cancer (NSCLC) cells were developed in our lab by long term treatment of parental cells with cisplatin or radiation. Our data showed no cross-resistance between these two sets of cell lines, indicating that molecular mechanisms of developing each resistance may be different. Using these sub-line cells, we sought to reveal the most significantly up-regulated molecules in cisplatin-resistant and radioresistant lung cancer cells, compared with parental cells. In qPCR analyses of screening DNA repair and cell survival-associated molecules, we identified NFκB and TNFα as the most significantly up-regulated molecules in cisplatin-resistant and radioresistant lung cancer cells, respectively, compared with parental cells. Western blot analysis of parental vs. resistant cells and the IHC staining of tumor tissues of A549P, A549CisR, and A549R26 cell-derived xenografts in mice confirmed such results. Next, studies using specific inhibitors of NFκB and TNFα and experiments using NFκB and TNFα-knocked down cells showed that inhibition or knockdown of NFκB overcame cisplatin-resistance, while inhibition or knockdown of TNFα increased radiosensitivity of radioresistant lung cancer cells. Therefore, these two molecules may be used as markers of the prognosis/diagnosis of individual resistance development during lung cancer treatment.


Asunto(s)
Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , FN-kappa B/metabolismo , Tolerancia a Radiación , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Ratones Desnudos , Tolerancia a Radiación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
2.
Exp Cell Res ; 364(1): 113-123, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408565

RESUMEN

Previous reports, including our experimental results, showed that macrophages migrate to prostate cancer (PCa) cells. We tested whether the migrated macrophages affect the susceptibility of castration-resistant PCa (CRPC) cells to cytotoxic actions of natural killer (NK) cells. We found treatment of tumor cells with the conditioned media (CM) of the PMA/IL-4 treated THP-1 cells (M2 type macrophages) (THP-1 CM) decreased the susceptibility of tumor cells to NK cell cytotoxicity, as a result of increased programmed death receptor ligand 1 (PD-L1) and decreased NK group 2D (NKG2D) ligands in CRPC cells. Meanwhile, the decreased susceptibility of tumor cells was also detected when NK cells were treated with THP-1 CM and used in NK cell cytotoxicity tests. Therefore, we observed higher resistance of CRPC cells when both tumor and NK cells were treated with THP-1 CM than when tumor cells or NK cells were individually treated. We further discovered that the PMA/IL-4 treated THP-1 cells secrete a high level of IL-6, so blocking the IL-6 action significantly decreased the PD-L1 level while recovering the NKG2D ligands, thus increasing the susceptibility of CRPC cells to NK cell action. Moreover, we discovered that JAK-Stat3 is the most critical IL-6 downstream signaling in triggering the THP-1 CM effect. Consequently, we found the susceptibility of CRPC cells to NK cells was increased when either JAK or Stat 3 inhibitor was added when tumor cells were treated with THP-1 CM, and that the best effect was observed when the JAK inhibitor and PD-L1 Ab were added together.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Citotoxicidad Inmunológica/inmunología , Resistencia a Antineoplásicos , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Neoplasias de la Próstata/inmunología , Transducción de Señal/efectos de los fármacos , Antígeno B7-H1/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Humanos , Técnicas In Vitro , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
3.
Prostate ; 78(5): 353-364, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330929

RESUMEN

BACKGROUND: Obesity affects prostate cancer (PCa) progression, and the periprostatic adipose tissue adjacent to the prostate is considered a driving force of disease progression. Adipocytes are the main cell population in adipose tissues and their paracrine role contributes to PCa progression, however its implication in modulating immune reactions remains largely unknown. We investigated the adipocyte role in controlling the susceptibility of castration-resistant PCa (CRPC) cells to the cytotoxic action of natural killer (NK) cells. METHODS: Using primary NK cells as the NK cell source, NK cell cytotoxicities to CRPC cells, either control media treated or adipocyte-conditioned media (CM) treated, were tested in lactate dehydrogenase (LDH) release-based assays. The levels of programmed death receptor ligand (PD-L1) and NK group 2D (NKG2D) ligands in adipocyte CM-treated CRPC cells were analyzed in qPCR analyses. Effects of blocking adipocyte action on altering PD-L1/NKG2D ligand levels and the susceptibility of CRPC cells to NK cell cytotoxicity were investigated. RESULTS: We found NK cell cytotoxicity to CRPC cells decreases when tumor cells are treated with adipocyte CM associated with PD-L1 and NKG2D ligand level alterations. Further, we discovered that the JAK/Stat3 signaling pathway was responsible for the adipocyte CM effect. Two adipokine molecules, IL-6 and leptin, were shown to be important in activation of the JAK/Stat3 signaling in CRPC cells to modulate the PD-L1/NKG2D ligand level alteration. Adding the inhibitors of JAK/Stat3 signaling or neutralizing antibodies of IL-6 or leptin increased the susceptibility of CRPC cells to NK cell action. CONCLUSIONS: Blocking the adipocyte effect by inhibiting the IL-6/leptin-JAK/Stat3 signaling axis may enhance NK cell mediated immunity to CRPC cells and this strategy may help to develop future therapeutics to treat obese PCa patients.


Asunto(s)
Adipocitos/inmunología , Antígeno B7-H1/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Células 3T3-L1 , Adipocitos/patología , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Citotoxicidad Inmunológica , Regulación hacia Abajo , Humanos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Quinasas Janus/inmunología , Quinasas Janus/metabolismo , Células Asesinas Naturales/patología , Ligandos , Masculino , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 313-322, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29306075

RESUMEN

Cisplatin remains the most effective therapy for non-small cell lung cancer (NSCLC). We previously have found cisplatin-resistant lung cancer cells (A549CisR and H157CisR) were more resistant to natural killer (NK) cell-mediated cytotoxicity than parental cells. We also discovered that fatty acid synthase (FASN) levels in cisplatin-resistant cells were significantly higher than in parental cells. To reveal whether a link exists between the up-regulated FASN levels and higher resistance to NK cell cytotoxicity, we performed inhibition studies using a FASN inhibitor and applied the FASN knockdown approach. In both approaches, we found that the FASN inhibition/knockdown significantly increased the susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We further found such decreased susceptibility was associated with an increased programmed death receptor ligand (PD-L1) level in cisplatin-resistant cells. In mechanisms studies, TGF-ß1 was found to be the FASN downstream signaling molecule that was responsible for modulating the PD-L1 levels in cisplatin-resistant cells. Accordingly, TGF-ß1 inhibition resulted in significantly increased susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We suggest that the inhibition of FASN-TGFß1-PD-L1 axis may improve the efficacy of immunotherapy in treating cisplatin-resistant lung cancer.


Asunto(s)
Antígeno B7-H1/inmunología , Cisplatino , Resistencia a Antineoplásicos/inmunología , Acido Graso Sintasa Tipo I/inmunología , Inmunidad Celular , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Proteínas de Neoplasias/inmunología , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Células A549 , Antígeno B7-H1/genética , Resistencia a Antineoplásicos/genética , Acido Graso Sintasa Tipo I/genética , Humanos , Células Asesinas Naturales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética
5.
Tumour Biol ; 39(5): 1010428317695948, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28459374

RESUMEN

In this study, we evaluated the prognostic potential and functional regulation of human nature antisense, brain-derived neurotrophic factor antisense, in non-small cell lung cancer. Non-small cell lung cancer carcinoma and adjacent non-carcinoma lung tissues were extracted from 151 patients. Their endogenous brain-derived neurotrophic factor antisense expression levels were compared by quantitative reverse transcription polymerase chain reaction. Clinical relevance between endogenous brain-derived neurotrophic factor antisense expression level and patients' clinicopathological variances or overall survival was analyzed. The potential of brain-derived neurotrophic factor antisense being an independent prognostic factor in non-small cell lung cancer was also evaluated. In in vitro non-small cell lung cancer cell lines, brain-derived neurotrophic factor antisense was upregulated through forced overexpression. The effects of brain-derived neurotrophic factor antisense upregulation on non-small cell lung cancer in vitro survival, proliferation, and migration were evaluated by viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, and transwell assays. Brain-derived neurotrophic factor antisense is lowly expressed in non-small cell lung cancer carcinoma tissues and further downregulated in late-stage carcinomas. Brain-derived neurotrophic factor antisense downregulation was closely associated with non-small cell lung cancer patients' advanced tumor, lymph node, metastasis stage, and positive status of lymph node metastasis, and confirmed to be an independent prognostic factor for patients' poor overall survival. In non-small cell lung cancer A549 and H226 cell lines, forced overexpression of brain-derived neurotrophic factor antisense did not alter cancer cell viability but had significantly tumor suppressive effect in inhibiting in vitro non-small cell lung cancer proliferation and migration. Endogenous brain-derived neurotrophic factor antisense in non-small cell lung cancer carcinoma could be a potential biomarker for predicting patients' prognosis. Overexpressing brain-derived neurotrophic factor antisense may also have a therapeutic potential in inhibiting non-small cell lung cancer tumor growth.


Asunto(s)
Biomarcadores de Tumor/genética , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/genética , Pronóstico , ARN Largo no Codificante/genética , Células A549 , Anciano , Biomarcadores de Tumor/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , ARN sin Sentido/biosíntesis , ARN sin Sentido/genética , ARN Largo no Codificante/biosíntesis
7.
Biol Chem ; 396(8): 929-36, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25719312

RESUMEN

Lung cancer has been the most prolific cancer in China - as in the rest of the world - with a high death rate and low 5-year survival rate. Previous evidence showed that JMJD2A is over-expressed in human non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and that high level of JMJD2A predicts poor overall and disease-free survival. However, the mechanism by which JMJD2A is regulated in human NSCLC is not fully understood. In the present study, we identified that the SIRT2 as an anti-oncogenic protein in NSCLC was down-regulated. JMJD2A as a target of SIRT2 was negatively correlated with SIRT2 level in NSCLC. SIRT2 bound to the promoter region of JMJD2A and negatively regulated JMJD2A expression. In addition, we found that SIRT2 inhibited NSCLC cells proliferation, colony formation and tumor growth in vitro and in vivo in a JMJD2A-dependent manner. In summary, our findings implicate that SIRT2 suppresses non-small cell lung cancer growth through targeting JMJD2A and SIRT2 activator may serve as candidate drug for NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Sirtuina 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroARNs/genética , ARN Interferente Pequeño/genética , Sirtuina 2/genética
8.
Chemosphere ; 364: 143205, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214402

RESUMEN

The extensive use of synthetic antioxidants, notably N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD), in rubber-related products, particularly in tire manufacturing, has induced concerns regarding their environmental impact and potential health hazards. Despite the identification of 6-PPD and its derivative, 6-PPD quinone (6-PPDQ), in various water samples and their lethal effects on certain aquatic species (e.g., coho salmon, rainbow trout and brook trout), the levels of airborne 6-PPD/6-PPDQ and their respiratory toxicity remain relatively unexplored. In this study, we aimed to evaluate the respiratory toxicity potential of 6-PPD and its derivatives, with a specific focus on detecting these compounds in airborne particulates and assessing their toxic effects on lung cells. Characterization of four airborne fine particulate (FP) samples revealed spherical morphologies with diameters ranging from 17.7 to 225.7 nm, displaying slight agglomeration and negative surface charge. methanol/acetonitrile extraction followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis confirmed the presence of both 6-PPD and 6-PPDQ on the surfaces of FPs, with significant variations (0.26-1.05 µg g-1) in loading capacity observed among the samples. Subsequent exposure of lung cells (THP-1, BEAS-2B, and A549) to 6-PPD and 6-PPDQ revealed dose-dependent declines in mitochondrial metabolic activity induced by 6-PPD, along with severe membrane damage, ATP depletion, and pro-inflammatory cytokine release. Conversely, 6-PPDQ exhibited negligible toxicity in all tested parameters. These findings underscore the potential health risks associated with airborne 6-PPD exposure and emphasize the importance of further research into the respiratory toxicity of 6-PPD derivatives.

9.
J Exp Clin Cancer Res ; 43(1): 202, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034411

RESUMEN

BACKGROUND: Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS: We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS: We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS: Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Quimiocina CXCL5 , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogénicas c-akt , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Transducción de Señal , Regulación hacia Arriba , Femenino , Masculino , Quimiotaxis , Ratones Endogámicos NOD , Ratones SCID
10.
Thorac Cancer ; 14(27): 2745-2753, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536668

RESUMEN

BACKGROUND: T cell factor-1 (TCF-1) + stem-like tumor-infiltrating lymphocytes (stem-like TILs) are important memory cells in the tumor microenvironment. However, their relationship with clinicopathological features, CD8+ TIL densities, immune checkpoint inhibitors (ICs), and prognostic values remain unknown for lung adenocarcinomas (LUADs). In this study, we aimed to characterize TCF-1+ TILs and their prognostic significance in patients with surgically resected LUADs. METHODS: Expression of TCF-1, CD8, and ICs including programmed death-1 (PD-1), lymphocyte activating-3 (LAG-3), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) in TILs were estimated using immunohistochemistry of resected LUADs. The association between TCF-1 expressions and clinicopathological characteristics of patient prognoses were analyzed. RESULTS: Positive TCF-1 expression significantly correlated with advanced pathological stage, tumor grade, CD8+ TILs density, TIM-3 expression, LAG-3 expression, and PD-1 expression. TCF-1 positivity was significantly associated with a better recurrence-free survival (RFS), and overall survival (OS). Subgroup analysis revealed that the TCF-1+/CD8+ group had the best RFS and OS, while the TCF-1-/CD8- group had the worst RFS and OS. Similarly, patients with TCF-1 + PD-1- had the best prognoses and patients with TCF-1-PD-1+ had the worst prognoses. CONCLUSION: TCF-1 had relatively high positive expression and special clinicopathological features in patients with LUAD. TCF-1+ TILs were related to CD8 density, TIM-3 expression, LAG-3 expression, and PD-1 expression, and were associated with better prognoses in LUAD patients. A combination of TCF-1 and CD8 densities or PD-1 expression further stratified patients into different groups with distinct prognoses.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A , Neoplasias Pulmonares/patología , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
11.
Cell Death Dis ; 13(7): 602, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35831279

RESUMEN

Sphingosine kinase 1 (SphK1) and sphingosine kinase (SphK2) are both important therapeutic targets of non-small cell lung cancer (NSCLC). SKI-349 is a novel, highly efficient and small molecular SphK1/2 dual inhibitor. Here in primary human NSCLC cells and immortalized cell lines, SKI-349 potently inhibited cell proliferation, cell cycle progression, migration and viability. The dual inhibitor induced mitochondrial depolarization and apoptosis activation in NSCLC cells, but it was non-cytotoxic to human lung epithelial cells. SKI-349 inhibited SphK activity and induced ceramide accumulation in primary NSCLC cells, without affecting SphK1/2 expression. SKI-349-induced NSCLC cell death was attenuated by sphingosine-1-phosphate and by the SphK activator K6PC-5, but was potentiated by the short-chain ceramide C6. Moreover, SKI-349 induced Akt-mTOR inactivation, JNK activation, and oxidative injury in primary NSCLC cells. In addition, SKI-349 decreased bromodomain-containing protein 4 (BRD4) expression and downregulated BRD4-dependent genes (Myc, cyclin D1 and Klf4) in primary NSCLC cells. At last, SKI-349 (10 mg/kg) administration inhibited NSCLC xenograft growth in nude mice. Akt-mTOR inhibition, JNK activation, oxidative injury and BRD4 downregulation were detected in SKI-349-treated NSCLC xenograft tissues. Taken together, targeting SphK1/2 by SKI-349 potently inhibits NSCLC cell growth in vitro and in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ceramidas/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esfingosina , Serina-Treonina Quinasas TOR , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto
12.
iScience ; 25(5): 104347, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35602958

RESUMEN

Exhausted CD8+ T cells with limited effector functions and high expression of multiple co-inhibitory receptors are one of the main barriers hindering antitumor immunity. The NADase CD38 has received considerable attention as a biomarker of CD8+ T cell exhaustion, but it remains unclear whether the increased CD38 directly promotes T cell dysfunctionality. Here, we surprisingly found that although Cd38 deficiency partially reverses NAD+ degradation and T cell dysfunction in vitro, the terminal exhausted differentiation of adoptively transferred CD8+ T cells in tumor is not impacted by either deficiency or overexpression of CD38. Monitoring the dynamic NAD+ levels shows that NAD+ levels are comparable between tumor infiltrated WT and Cd38 -/- OT-1 cells. Therefore, our results suggest that decreased NAD+ are correlated with T cell dysfunction, but deficiency of CD38 is not enough for rescuing NAD+ in tumor infiltrated CD8+ T cells and fails to increase the efficacy of antitumor T cell therapy.

13.
Int J Biol Sci ; 18(16): 6163-6175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439873

RESUMEN

The aarF domain containing kinase 2 (ADCK2) is a mitochondria-locating protein, important for fatty acid metabolism and coenzyme Q biosynthesis. The bioinformatics results show that elevated ADCK2 transcripts in NSCLC correlate with poor overall survival and poor anti-PD-1/PD-L1 therapy response. ADCK2 is overexpressed in local human NSCLC tissues and various primary and established NSCLC cells. In NSCLC cells, ADCK2 shRNA or CRISPR/Cas9 knockout remarkably suppressed cell viability, proliferation, cell cycle progression, cell mobility, and provoked cell apoptosis. Moreover, ADCK2 depletion disrupted mitochondrial functions in NSCLC cells, causing cytochrome C release, mitochondrial depolarization, DNA damage and ATP reduction. Contrarily, ectopic ADCK2 overexpression promoted NSCLC cell growth. Further studies revealed that ADCK2 depletion inactivated Akt-mTOR signaling in primary NSCLC cells. NSCLC xenograft growth in nude mice was significantly hindered after ADCK2 silencing or knockout. ADCK2 depletion, apoptosis induction and oxidative injury as well as ATP reduction and Akt-mTOR inactivation were detected in ADCK2-silenced or ADCK2-knockout NSCLC xenograft tissues. Together overexpressed ADCK2 is important for the growth of NSCLC cells, representing an important therapeutic molecular oncotarget.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Serina-Treonina Quinasas TOR , Adenosina Trifosfato
14.
J Oncol ; 2021: 9255494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504527

RESUMEN

Adjuvant radiotherapy is one of the main treatment methods for breast cancer, but its clinical benefit depends largely on the characteristics of the patient. This study aimed to explore the relationship between the expression of zinc finger (ZNF) gene family proteins and the radiosensitivity of breast cancer patients. Clinical and gene expression data on a total of 976 breast cancer samples were obtained from The Cancer Genome Atlas (TCGA) database. ZNF gene expression was dichotomized into groups with a higher or lower level than the median level of expression. Univariate and multivariate Cox regression analyses were used to evaluate the relationship between ZNF gene expression levels and radiosensitivity. The Molecular Taxonomy Data of the International Federation of Breast Cancer (METABRIC) database was used for validation. The results revealed that 4 ZNF genes were possible radiosensitivity markers. High expression of ZNF644 and low expression levels of the other 3 genes (ZNF341, ZNF541, and ZNF653) were related to the radiosensitivity of breast cancer. Hierarchical cluster, Cox, and CoxBoost analysis based on these 4 ZNF genes indicated that patients with a favorable 4-gene signature had better overall survival on radiotherapy. Thus, this 4-gene signature may have value for selecting those patients most likely to benefit from radiotherapy. ZNF gene clusters could act as radiosensitivity signatures for breast cancer patients and may be involved in determining the radiosensitivity of cancer.

15.
Lung Cancer ; 160: 84-91, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34479175

RESUMEN

OBJECTIVES: CD66b positive tumor-infiltrating neutrophils (TINs) are key immunity cells in the tumor microenvironment (TME). However, their relationship with clinicopathological features, immune checkpoints (ICs), and prognostic value remains undetermined in lung adenocarcinoma (LUAD). In this study, we aimed to characterize the infiltration by TINs and the prognostic significance in patients with surgically resected LUAD. MATERIALS AND METHODS: Expression of CD66b and ICs, including PD-L1, PD-1, CTLA4, LAG3, TIM3, TIGIT, VISTA, and BTLA, in both cancer cell and tumor-infiltrating lymphocytes (TILs) were estimated by immunohistochemistry in resected LUAD. The associations between CD66b expression and clinicopathological characteristics in patient prognoses were analyzed. We also verified results in another cohort from 85 patients with untreated LUAD and further analyzed the correlation between CD66b expression and EGFR and KRAS mutation status in addition to the rearrangement of the anaplastic lymphoma receptor tyrosine kinase gene (ALK). RESULTS: A total of 240 patients were included in this study. CD66b expression was observed in 87 (36.2%) samples. ICs including PD-L1, PD-1, CTLA4, LAG3, TIM3, TIGIT, VISTA, and BTLA were observed in percentages that ranged from 23.8% to 59.4%. Positive CD66b expression significantly correlated with smoking history (p = 0.029), pathological stage (p = 0.040), and the positive expression of LAG-3 (p < 0.001), PD-1 (p = 0.008), CTLA-4 (p = 0.013), TIM-3 (p = 0.025), TIGIT (p = 0.002), PD-L1 in TILs (p = 0.015), and PD-L1 in tumor cells (p = 0.010). CD66b positivity was significantly associated with worse recurrence-free survival (RFS) (hazard ratio, HR, 1.687; 95% confidence interval, CI, 1.058-2.690, p = 0.028) and overall survival (OS) (HR, 1.667; 95% CI, 1.097-2.534, p = 0.017). Subgroup analysis revealed that the CD66b+/LAG-3 + group had the worst RFS (5-year rate: 39.5%,) and OS (5-year rate: 53.7%,), while the CD66b-/LAG-3 - group had the best RFS (5-year rate: 65.6%) and OS (5-year rate: 78.8%). The p value in analysis of RFS and OS was 0.005 and 0.008, respectively. In the verification set, high expression of CD66b was also significantly correlated with the positive expression of LAG-3 (p < 0.001), PD-1 (p = 0.002), CTLA-4 (p = 0.034), TIM-3 (p = 0.049), PD-L1 in TILs (p = 0.003), and PD-L1 in tumor cells (p = 0.045). There was no correlation between CD66b expression and positive TIGIT expression (p = 0.077), EGFR mutation (p = 0.223), KRAS mutation (p = 0.151), and ALK fusion (p = 0.310). CONCLUSION: CD66b had a relatively high positive expression rate and special clinicopathological features in patients with LUAD. CD66b + TINs were related to the expression of ICs and associated with poor prognoses in LUAD. A combination of CD66b and ICs, especially LAG-3 could further stratify patients into different groups with distinct prognoses.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Procedimientos Quirúrgicos Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/cirugía , Adenocarcinoma del Pulmón/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Pronóstico , Microambiente Tumoral
17.
Int J Oncol ; 57(4): 1072-1073, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945362

RESUMEN

Subsequently to the publication of the above paper, the authors have realized that the western blots featured in Fig. 5B were inadvertently copied across from Fig. 4B owing to an error made during the figure compilation process. The corrected version of Fig. 5 is featured on the next page, showing the correct data for the western blot analysis of the programmed death receptor ligand 1 level in radioresistant lung cancer cells under the specified experimental conditions. Note that these changes do not affect the interpretation of the data or the conclusions reported in this paper, and all the authors agree to this correction. The authors apologize to the Editor and to the readership of the Journal for any inconvenience caused. [the original article was published in International Journal of Oncology 53: 317-328, 2018; DOI: 10.3892/ijo.2018.4394].

18.
Stem Cell Res Ther ; 10(1): 196, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248452

RESUMEN

Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.


Asunto(s)
Tejido Adiposo/citología , Isquemia Miocárdica/terapia , Células Madre/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Isquemia Miocárdica/metabolismo , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Trasplante de Células Madre , Células Madre/fisiología
19.
J Cancer ; 10(12): 2735-2744, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258781

RESUMEN

Increased evidence reveals that miR-940 inhibits the migration and invasion of cancer cells. Considering transforming growth factor ß (TGF-ß) signaling is crucial to cellular epithelial-mesenchymal transition (EMT) process and metastasis of cancer, it is in urgent to explore whether and how miR-940 plays an essential role in regulating TGF-ß-induced EMT in lung cancer progression. In the present study, we observed a reciprocal expression with down-regulated miR-940 and up-regulated Snail mRNA in non-small-cell lung cancer (NSCLC) tissues. we further found that the expression of miR-940 was decreased in NSCLC tissues with lymph node metastasis, advanced TNM stages and poor cell differentiation, in which, on the contrary, the expression of Snail was increased. Overexpression of miR-940 significantly inhibited Snail mRNA and protein expression in A549 and H226 cells. Mechanistically, Snail mRNA was identified as target of miR-940. In addition, miR-940 repressed TGF-ß-induced EMT and further hampered the cell migration and invasion. Finally, siRNA-mediated knockdown of Snail copied the phenotype of miR-940 overexpression in A549 and H226 cells. Taken together, our study reveals that miR-940 can suppress TGF-ß-induced EMT and cell invasion by targeting Snail 3'-UTR mRNA in NSCLC.

20.
J Exp Clin Cancer Res ; 38(1): 149, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961670

RESUMEN

BACKGROUND: The cisplatin-resistance is still a main course for chemotherapy failure of lung cancer patients. Cisplatin-resistant cancer cells own higher malignance and exhibited increased metastatic ability, but the mechanism is not clear. In this study, we investigated the effects of Ataxia Telangiectasia Mutated (ATM) on lung cancer metastasis. MATERIALS AND METHODS: Cisplatin-resistant A549CisR and H157CisR cell line were generated by long-term treating parental A549 and H157 cells (A549P and H157P) with cisplatin. Cell growth, cell migration and cell invasion were determined. Gene expressions were determined by Western Blot and qPCR. Tumor metastasis was investigated using a xenograft mouse model. RESULTS: The IC50 of the cisplatin-resistant cells (A549CisR and H157CisR cells) to cisplatin was 6-8 higher than parental cells. The A549CisR and H157CisR cells expressed lower level of E-cadherin and higher levels of N-cadherin, Vimentin and Snail compared to the parental A549P and H157P cells, and exhibited stronger capabilities of metastatic potential compared to the parental cells. The ATM expression was upregulated in A549CisR and H157CisR cells and cisplatin treatment also upregulated expression of ATM in parental cells, The inhibition of ATM by using specific ATM inhibitor CP466722 or knock-down ATM by siRNA suppressed Epithelial-to-Mesenchymal transition (EMT) and metastatic potential of A549CisR and H157CisR cells. These data suggest that ATM mediates the cisplatin-resistance in lung cancer cells. Expressions of JAK1,2,、 STAT3 、PD-L1 and ATM were increased in A549CisR and H157CisR cells and could by induced by cisplatin in parental lung cancer cells. Interestedly, ATM upregulated PD-L1 expression via JAK1,2/STAT3 pathway and inhibition of ATM decreased JAK/STAT3 signaling and decreased PD-L1 expression. The treatment of PD-L1 neutralizing Ab reduced EMT and cell invasion. Inhibition of JAK1,2/STAT3 signaling by specific inhibitors suppressed ATM-induced PD-L1 expression, EMT and cell invasion. Importantly, inhibition of ATM suppressed EMT and tumor metastasis in cisplatin-resistant lung cancer cells in an orthotopic xenograft mouse model. CONCLUSIONS: Our results show that ATM regulates PD-L1 expression through activation of JAK/STAT3 signaling in cisplatin-resistant cells. Overexpression of ATM contributes to cisplatin-resistance in lung cancer cells. Inhibition of ATM reversed EMT and inhibited cell invasion and tumor metastasis. Thus, ATM may be a potential target for the treatment of cisplatin-resistant lung cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ataxia Telangiectasia/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares/genética , Factor de Transcripción STAT3/metabolismo , Animales , Ataxia Telangiectasia/patología , Humanos , Neoplasias Pulmonares/patología , Ratones , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA