Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133050, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880451

RESUMEN

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g-1. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.


Asunto(s)
Carboximetilcelulosa de Sodio , Electrodos , Polilisina , Silicio , Carboximetilcelulosa de Sodio/química , Silicio/química , Polilisina/química , Suministros de Energía Eléctrica , Reactivos de Enlaces Cruzados/química , Litio/química
2.
Int J Biol Macromol ; 265(Pt 2): 131143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537861

RESUMEN

Hydrogel electrolyte is an ideal candidate material for flexible energy storage devices due to its excellent softness and conductivity properties. However, challenges such as the inherent mechanical weakness, the susceptibility to be frozen in low-temperature environments, and the insufficiency of hydrogel-electrode contact persist. Herein, a "Multi in One" strategy is employed to effectively conquer these difficulties by endowing hydrogels with high strength, freeze-resistance, and self-adhesive ability. Multiple hydrogen bond networks and ion crosslinking networks are constructed within the hydrogel electrolyte (PVA/PAAc/XG) containing polyvinyl alcohol (PVA), acrylic acid (AAc), and xanthan gum (XG), promoting the enhanced mechanical property, and the adhesion to electrode materials is also improved through abundant active groups. The introduction of zinc ions provides the material with superior frost resistance while also promoting electrical conductivity. Leveraging its multifunction of superior mechanical strength, anti-freeze property, and self-adhesive characteristic, the PVA/PAAc/XG hydrogel electrolyte is employed to fabricate zinc ion hybrid supercapacitors (ZHS). Remarkably, ZHS exhibits outstanding electrochemical performance and cycle stability. A remarkable capacity retention rate of 83.86 % after 10,000 charge-discharge cycles can be achieved at high current densities, even when the operational temperature decreases to -60 °C, showing great potential in the field of flexible energy storage devices.


Asunto(s)
Polisacáridos Bacterianos , Cementos de Resina , Zinc , Hidrogeles , Electrólitos , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA