RESUMEN
Advancements in high-throughput technology offer researchers an extensive range of multi-omics data that provide deep insights into the complex landscape of cancer biology. However, traditional statistical models and databases are inadequate to interpret these high-dimensional data within a multi-omics framework. To address this limitation, we introduce DriverDBv4, an updated iteration of the DriverDB cancer driver gene database (http://driverdb.bioinfomics.org/). This updated version offers several significant enhancements: (i) an increase in the number of cohorts from 33 to 70, encompassing approximately 24 000 samples; (ii) inclusion of proteomics data, augmenting the existing types of omics data and thus expanding the analytical scope; (iii) implementation of multiple multi-omics algorithms for identification of cancer drivers; (iv) new visualization features designed to succinctly summarize high-context data and redesigned existing sections to accommodate the increased volume of datasets and (v) two new functions in Customized Analysis, specifically designed for multi-omics driver identification and subgroup expression analysis. DriverDBv4 facilitates comprehensive interpretation of multi-omics data across diverse cancer types, thereby enriching the understanding of cancer heterogeneity and aiding in the development of personalized clinical approaches. The database is designed to foster a more nuanced understanding of the multi-faceted nature of cancer.
Asunto(s)
Bases de Datos Genéticas , Multiómica , Neoplasias , Humanos , Algoritmos , Bases de Datos Genéticas/normas , Neoplasias/genética , Neoplasias/fisiopatologíaRESUMEN
In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.
Asunto(s)
Lipidómica , Lípidos , Programas Informáticos , Lípidos/química , Lipidómica/instrumentación , Lipidómica/métodos , Análisis de Datos , Internet , Algoritmos , Visualización de DatosRESUMEN
Persistent currents circulate continuously without requiring external power sources. Here, we extend their theory to include dissipation within the framework of non-Hermitian quantum Hamiltonians. Using Green's function formalism, we introduce a non-Hermitian Fermi-Dirac distribution and derive an analytical expression for the persistent current that relies solely on the complex spectrum. We apply our formula to two dissipative models supporting persistent currents: (i) a phase-biased superconducting-normal-superconducting junction; (ii) a normal ring threaded by a magnetic flux. We show that the persistent currents in both systems exhibit no anomalies at any emergent exceptional points, whose signatures are only discernible in the current susceptibility. We validate our findings by exact diagonalization and extend them to account for finite temperatures and interaction effects. Our formalism offers a general framework for computing quantum many-body observables of non-Hermitian systems in equilibrium, with potential extensions to nonequilibrium scenarios.
RESUMEN
Bisphosphonates have been associated with a decreased risk of revision surgery after total joint arthroplasty of the hip or knee (TJA) because of their effects on decreased periprosthetic bone loss and prosthetic migration. However, the results in the early literature are inconsistent, and the influence of bisphosphonates on associated complications and subsequent TJA remains unknown. This study investigated the association between the use of bisphosphonates and the risk of adverse outcomes after primary TJA. This matched cohort study utilized the National Health Insurance Research Database in Taiwan to identify patients who underwent primary TJA over a 15-year period (January 2000-December 2015 inclusive). Study participants were further categorized into two groups, bisphosphonate users and nonusers, using propensity score matching. The Kaplan-Meier curve analysis and adjusted hazard ratios (aHRs) of revision surgery, adverse outcomes of primary surgery and subsequent TJA were calculated using Cox regression analysis. This study analyzed data from 6485 patients who underwent total hip arthroplasty (THA) and 20,920 patients who underwent total knee arthroplasty (TKA). The risk of revision hip and knee arthroplasty was significantly lower in the bisphosphonate users than in the nonusers (aHR, 0.54 and 0.53, respectively). Furthermore, the risk of a subsequent total joint arthroplasty, adverse events and all-cause mortality were also significantly reduced in the bisphosphonate users. This study, involving a large cohort of patients who underwent primary arthroplasties, revealed that bisphosphonate treatment may potentially reduce the risk of revision surgery and associated adverse outcomes. Furthermore, the use of bisphosphonates after TJA is also associated with a reduced need for subsequent arthroplasty.Research Registration Unique Identifying Number (UIN): ClinicalTrials.gov Identifier-NCT05623540 ( https://clinicaltrials.gov/show/NCT05623540 ).
Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Difosfonatos , Humanos , Femenino , Masculino , Difosfonatos/uso terapéutico , Difosfonatos/efectos adversos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/estadística & datos numéricos , Anciano , Persona de Mediana Edad , Artroplastia de Reemplazo de Cadera/efectos adversos , Estudios de Cohortes , Reoperación/estadística & datos numéricos , Taiwán/epidemiología , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/efectos adversos , Complicaciones Posoperatorias/epidemiología , Resultado del TratamientoRESUMEN
During investigations of invertebrate-associated fungi in Yunnan Province of China, a new species, Sporodiniella sinensis sp. nov., was collected. Morphologically, S. sinensis is similar to Sporodiniella umbellata; however, it is distinguished from S. umbellata by its greater number of sporangiophore branches, longer sporangiophores, larger sporangiospores, and columellae. The novel species exhibits similarities of 91.62â% for internal transcribed spacer (ITS), 98.66-99.10â% for ribosomal small subunit (nrSSU), and 96.36-98.22â% for ribosomal large subunit (nrLSU) sequences, respectively, compared to S. umbellata. Furthermore, phylogenetic analyses based on combined sequences of ITS, nrLSU and nrSSU show that it forms a separate clade in Sporodiniella, and clusters closely with S. umbellata with high statistical support. The phylogenetic and morphological evidence support S. sinensis as a distinct species. Here, it is formally described and illustrated, and compared with other relatives.
Asunto(s)
Ácidos Grasos , Mucorales , Animales , Filogenia , China , Análisis de Secuencia de ADN , Composición de Base , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , InvertebradosRESUMEN
This study aimed to investigate the correlation between mandibular deviation (MD) and possible clinical factors in patients with anterior disc displacement (ADD). This retrospective clinical study enrolled 296 patients with ADD, diagnosed using magnetic resonance imaging, from 2015 to 2018. The clinical symptoms and medical histories of these patients were carefully examined and recorded. Mandibular deviation was the primary outcome variable confirmed by a combination of clinical examination and facial photographs or posteroanterior cephalograms. The primary predictor variable was ADD staging. Secondary predictor variables included condylar height and distance of disc displacement. Other predictor variables were age, sex, disease course, oral parafunctions, depression, and bone mineral density. We used logistic regression to examine the correlation between the MD and all predictor variables. The χ2 test and analysis of variance were used to exclude the correlation between the predictor variables. In this study, the prevalence of MD was 77% among 278 patients with ADD. Bilateral ADD staging significantly contributed to MD on both sides. The odds ratio increased with the deterioration of disc displacement. The present study demonstrated that the ADD staging influences the condylar height and MD, and that articular disk position should be considered while treating MD.
Asunto(s)
Densidad Ósea , Maloclusión , Humanos , Estudios Retrospectivos , Progresión de la Enfermedad , CaraRESUMEN
AIM: Compared to the conventional cardiopulmonary resuscitation (CCPR), potential benefits of extracorporeal cardiopulmonary resuscitation (ECPR) for patients with cardiac arrest (CA) are still controversial. We aimed to determine whether ECPR can improve the prognosis of CA patients compared with CCPR. METHODS: We systematically searched PubMed, EMBASE, and Cochrane Library from database's inception to July 2023 to identify randomized controlled trials (RCTs) or cohort studies that compared ECPR with CCPR in adults (aged ≥ 16 years) with out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA). This meta-analysis was performed using a random-effects model. Two researchers independently reviewed the relevance of the study, extracted data, and evaluated the quality of the included literature. The primary outcome was short-term (from hospital discharge to one month after cardiac arrest) and long-term (≥ 90 days after cardiac arrest) survival with favorable neurological status (defined as cerebral performance category scores 1 or 2). Secondary outcomes included survival at 1 months, 3-6 months, and 1 year after cardiac arrest. RESULTS: The meta-analysis included 3 RCTs and 14 cohort studies involving 167,728 patients. We found that ECPR can significantly improve good neurological prognosis (RR 1.82, 95%CI 1.42-2.34, I2 = 41%) and survival rate (RR 1.51, 95%CI 1.20-1.89, I2 = 62%). In addition, the results showed that ECPR had different effects on favorable neurological status in patients with OHCA (short-term: RR 1.50, 95%CI 0.98- 2.29, I2 = 55%; long-term: RR 1.95, 95% CI 1.06-3.59, I2 = 11%). However, ECPR had significantly better effects on neurological status than CCPR in patients with IHCA (short-term: RR 2.18, 95%CI 1.24- 3.81, I2 = 9%; long-term: RR 2.17, 95% CI 1.19-3.94, I2 = 0%). CONCLUSIONS: This meta-analysis indicated that ECPR had significantly better effects on good neurological prognosis and survival rate than CCPR, especially in patients with IHCA. However, more high-quality studies are needed to explore the role of ECPR in patients with OHCA.
Asunto(s)
Reanimación Cardiopulmonar , Humanos , Reanimación Cardiopulmonar/métodos , Pronóstico , Paro Cardíaco/terapia , Paro Cardíaco/mortalidad , Oxigenación por Membrana Extracorpórea/métodos , Paro Cardíaco Extrahospitalario/terapia , Paro Cardíaco Extrahospitalario/mortalidadRESUMEN
Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2-/- mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.
Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Humanos , Animales , Ratones , Macrófagos Peritoneales/patología , Macrófagos/metabolismo , Hígado/metabolismo , Esquistosomiasis/metabolismo , Esquistosomiasis/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismoRESUMEN
Alcohol withdrawal is a clinically important consequence and potential driver of Alcohol Use Disorder. However, susceptibility to withdrawal symptoms, ranging from craving and anxiety to seizures and delirium, varies greatly. Selectively bred Withdrawal Seizure-Prone (WSP) and Seizure-Resistant (WSR) mice are an animal model of differential susceptibility to withdrawal and phenotypes with which withdrawal severity correlates. To identify innate drivers of alcohol withdrawal severity, we performed a multi-omic study of the WSP and WSR lines and F2 mice derived from them, using genomic, genetic, and transcriptomic analyses. Genes implicated in seizures and epilepsy were over-represented among those that segregated between WSP and WSR mice and that displayed differential expression in F2 mice high and low in withdrawal. Quantitative trait locus (QTL) analysis of ethanol withdrawal convulsions identified several genome-wide significant loci and pointed to genes that modulate potassium channel function and neural excitability. Perturbations of expression of genes involved in synaptic transmission, including GABAergic and glutamatergic genes, were prominent in prefrontal cortex transcriptome. Expression QTL (eQTL) analysis fine mapped genes within the peak ethanol withdrawal QTL regions. Genetic association analysis in human subjects provided converging evidence for the involvement of those genes in severity of alcohol withdrawal and dependence. Our results reveal a polygenic network and neural signaling pathways contributing to ethanol withdrawal seizures and related phenotypes that overlap with genes modulating epilepsy and neuronal excitability.
Asunto(s)
Alcoholismo , Epilepsia , Síndrome de Abstinencia a Sustancias , Ratones , Humanos , Animales , Síndrome de Abstinencia a Sustancias/genética , Alcoholismo/genética , Convulsiones/genética , EtanolRESUMEN
Micro/nano electronic devices heat dissipation depends heavily on the thermal interface materials (TIMs). Despite notable progress, it is hard to efficaciously enhance the thermal properties of the hybrid TIMs with high-load additives due to an absence of effective heat transfer routes. Herein, the low content of three-dimensional (3D) graphene with interconnected networks is adopted as the additive to improve the thermal properties of epoxy composite TIMs. The thermal diffusivity and thermal conductivity of the as-prepared hybrids were dramatically improved by constructing thermal conduction networks after adding 3D graphene as fillers. The 3D graphene/epoxy hybrid's optimal thermal characteristics were observed at 1.5 wt% of 3D graphene content, corresponding to a maximum enhancement of 683%. Besides, heat transfer experiments were further performed to determine the superb heat dissipation potential of the 3D graphene/epoxy hybrids. Moreover, the 3D graphene/epoxy composite TIM was also applied to high-power LED to improve heat dissipation. It effectively reduced the maximum temperature from 79.8 °C to 74.3 °C. These results are beneficial for the better cooling performance of electronic devices and provide useful guidelines for advancing the next-generation TIMs.
RESUMEN
Diabetic nephropathy (DN), the principal pathogeny of end-stage renal disease (ESRD), is related to metabolic disorders, chronic inflammation, and oxidative stress. It was reported that high expression of interleukin-17A (IL-17A) was intimately related to the progression of DN, and targeting IL-17A exhibited regulating effects on inflammation and autoimmunity but had only limited impact on the oxidative stress damage in DN. Recent studies showed that interleukin-22 (IL-22) could inhibit mitochondrial damage and inflammatory response. Thus, the cytokine IL-22 was first fused to anti-IL-17A antibody for endowing the antibody with the anti-hyperglycemia and anti-inflammation activity. Our study demonstrated that the fusion molecule, anti-IL17A/IL22 fusion protein, could not only lead to the increase of M1 macrophages and the decrease of M2 macrophages, further improving the immune microenvironment, but also prevent the loss of mitochondrial membrane potential by reducing the production of ROS in murine DN model. In addition, the fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways, further synergistically restraining the production of NLRP3, thus suppressing the inflammatory response and playing beneficial effect on slowing down the progression of DN. In conclusion, our findings demonstrated that the bifunctional IL-17A antibody and IL-22 fusion protein were of great benefit to DN, which highlighted a potential therapeutic strategy. KEY POINTS: ⢠Anti-IL17A/IL22 fusion protein could improve the immune microenvironment and reduce the production of ROS. ⢠Anti-IL17A/IL22 fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways and then restrain the activation of NLRP3.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inflamación/patologíaRESUMEN
OBJECTIVE: During the development of temporomandibular joint osteoarthritis, endochondral ossification is compromised which leads to condylar degeneration; miR-335-5p in endochondral ossification in osteoarthritic condylar cartilage tissue remains unclear. METHODS: Up-regulated microRNA and its target gene were searched for endochondral ossification in osteoarthritis articular cartilage. The effect of increased or decreased miR-335-5p on endochondral ossification was evaluated by transfecting miR-335-5p mimics or miR-335-5p inhibitor in vitro in chondrocytes C28/I2. Finally, we injected the temporomandibular joint of rats intra-articularly with agomiR-335 in a unilateral anterior crossbite rat model to determine the in vivo regulation of miR-335. RESULTS: After the onset of temporomandibular joint osteoarthritis, miR-335-5p levels were gradually up-regulated, whereas endochondral ossification-related genes were down-regulated in condylar cartilage specimens. Our results showed that miR-335 inhibited endochondral ossification after administration of a miR-335 antagonist into the temporomandibular joint articular cavity of a unilateral anterior crossbite rat model. AgomiR-335, a miR-335 agonist, inhibited matrix mineralization in fibrocartilage stem cells in vitro and then miR-335-5p negatively regulated chondrocyte activity by directly targeting SP1 via promoting transforming growth factor-ß/Smad signalling. CONCLUSION: miR-335-5p can significantly inhibit endochondral ossification; therefore, its inhibition may be beneficial for the treatment of temporomandibular joint osteoarthritis.
RESUMEN
With the continuing rise of lipidomic studies, there is an urgent need for a useful and comprehensive tool to facilitate lipidomic data analysis. The most important features making lipids different from general metabolites are their various characteristics, including their lipid classes, double bonds, chain lengths, etc. Based on these characteristics, lipid species can be classified into different categories and, more interestingly, exert specific biological functions in a group. In an effort to simplify lipidomic analysis workflows and enhance the exploration of lipid characteristics, we have developed a highly flexible and user-friendly web server called LipidSig. It consists of five sections, namely, Profiling, Differential Expression, Correlation, Network and Machine Learning, and evaluates lipid effects on cellular or disease phenotypes. One of the specialties of LipidSig is the conversion between lipid species and characteristics according to a user-defined characteristics table. This function allows for efficient data mining for both individual lipids and subgroups of characteristics. To expand the server's practical utility, we also provide analyses focusing on fatty acid properties and multiple characteristics. In summary, LipidSig is expected to help users identify significant lipid-related features and to advance the field of lipid biology. The LipidSig webserver is freely available at http://chenglab.cmu.edu.tw/lipidsig.
Asunto(s)
Lipidómica/métodos , Programas Informáticos , Animales , Biomarcadores , Minería de Datos , Ácidos Grasos/química , Ferroptosis , Internet , Metabolismo de los Lípidos , Lípidos/química , Aprendizaje Automático , Ratones , Neoplasias/metabolismoRESUMEN
Benefit for clinical melanoma treatments, the transdermal neoadjuvant therapy could reduce surgery region and increase immunotherapy efficacy. Using lipoplex (Lipo-PEG-PEI-complex, LPPC) encapsulated doxorubicin (DOX) and carrying CpG oligodeoxynucleotide; the transdermally administered nano-liposomal drug complex (LPPC-DOX-CpG) would have high cytotoxicity and immunostimulatory activity to suppress systemic metastasis of melanoma. LPPC-DOX-CpG dramatically suppressed subcutaneous melanoma growth by inducing tumor cell apoptosis and recruiting immune cells into the tumor area. Animal studies further showed that the colonization and growth of spontaneously metastatic melanoma cells in the liver and lung were suppressed by transdermal LPPC-DOX-CpG. Furthermore, NGS analysis revealed IFN-γ and NF-κB pathways were triggered to recruit and activate the antigen-presenting-cells and effecter cells, which could activate the anti-tumor responses as the major mechanism responsible for the therapeutic effect of LPPC-DOX-CpG. Finally, we have successfully proved transdermal LPPC-DOX-CpG as a promising penetrative carrier to activate systemic anti-tumor immunity against subcutaneous and metastatic tumor.
Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológicoRESUMEN
BACKGROUND/PURPOSE: Complex arthroplasties for periacetabular metastatic lesions can result in complications including infection and prosthesis loosening owing to poor bone quality. A new surgical protocol has been developed as a joint-sparing surgery to avoid complications after arthroplasties. The main surgical steps are: (a) conservative and accurate tumor resection with aid of 3D printing model-assisted preoperative resection simulation and preparation of pre-contour plate, (b) reconstruction with structural bone graft through the sandwich technique for augmentation of subchondral bone. METHODS: This retrospective study consisted of 6 patients (5 with metastatic bone tumors and one with multiple myeloma). The pelvic bone resection as defined by Enneking and Dunham were typed I + II in 2 patients and type II in 4 patients. The medical records, images, musculoskeletal tumor society (MSTS) score and visual analogue scale (VAS) were used for evaluation. RESULTS: The mean operative time was 234 minutes, and the average surgical blood loss was 1408 mL. The mean follow-up period was 21 months. The mean VAS significantly decreased at postoperative 1-week and 1-year follow-up. There were no intraoperative or early postoperative complications. The median MSTS score during the final follow-up was 26 points (range, 14-28 points). Except for one case who experienced severe joint destruction, all the other five cases were classified as excellent or good (>15). CONCLUSION: With precise tumor resection and reconstruction with sandwich procedure, the joint-sparing surgery can be performed in selected patients with metastatic periacetabular tumors.
Asunto(s)
Neoplasias Óseas , Humanos , Estudios Retrospectivos , Neoplasias Óseas/cirugía , Complicaciones Posoperatorias , Impresión Tridimensional , Resultado del TratamientoRESUMEN
Flexible power sources are critical to achieve the wide adoption of portable and wearable electronics. Herein, a facile and general strategy of fabricating a fibrous electrode was developed by 3D active coating technology, in which a stepping syringe with electrode paste was synchronously injected onto a rotating conductive wire, distinguished from the conventional direct-write 3D printing without a current collector. A series of such electrodes with different coating weight can be fabricated accurately and efficiently by adjusting critical process parameters following a set of derived equations. The demonstrated fibrous Zn-MnO2 battery with a high commercial ε-MnO2 loading of 14.9 mg cm-2 onto a stainless steel wire shows a reasonable energy density of 108 mWh cm-3, while the fiber-shaped supercapacitor with commercial porous graphene exhibits a high capacitance of 142.9 F g-1 and good durability for bending 10,000 cycles. This work constructs a bridge between materials and fiber-shaped electrodes for flexible energy storage devices.
RESUMEN
Medication errors can have severe consequences and threaten patient safety. The patient safety-related benefits of automated dispensing cabinets (ADCs) have been reported by several previous studies, including a reduction in medication errors in intensive care units (ICUs) and emergency departments. However, the benefits of ADCs need to be assessed, given the different healthcare practice models. This study aimed to compare the rates of medication errors, including prescription, dispensing, and administrative, before and after using ADCs in intensive care units. The prescription, dispensing, and administrative error data before and after the adoption of ADCs were retrospectively collected from the medication error report system. The severity of medication errors was classified according to the National Coordinating Council for Medication Error Reporting and Prevention guidelines. The study outcome was the rate of medication errors. After the adoption of ADCs in the intensive care units, the rates of prescription and dispensing errors reduced from 3.03 to 1.75 per 100,000 prescriptions and 3.87 to 0 per 100,000 dispensations, respectively. The administrative error rate decreased from 0.046 to 0.026%. The ADCs decreased National Coordinating Council for Medication Error Reporting and Prevention category B and D errors by 75% and category C errors by 43%. To improve medication safety, multidisciplinary collaboration and strategies, such as the use of automated dispensing cabinets, education, and training programs from a systems perspective, are warranted.
Asunto(s)
Errores de Medicación , Sistemas de Medicación en Hospital , Humanos , Estudios Retrospectivos , Errores de Medicación/prevención & control , Unidades de Cuidados Intensivos , Cuidados CríticosRESUMEN
Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen-doped carbon, Co-N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP ), graphitic N (NG ), and pyrrolic N (NPY ). Co-N/C with the Co-N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc-air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co-N4 active sites, leading to the downshift of d-band center of Co-N4 and weakening the binding energies of the intermediates on Co-N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
RESUMEN
BACKGROUND AIMS: Infrapatellar fat pad-derived mesenchymal stromal cells (IFP-MSCs) have not yet been used in a human clinical trial. In this open-label phase 1 study, patients with knee osteoarthritis (OA) received a single intra-articular injection of autologous IFP-MSCs. Safety was assessed through physical examination of the knee joint, vital signs, laboratory tests and adverse events. Efficacy was evaluated with regard to pain and function using questionnaires, x-ray and magnetic resonance imaging (MRI). Indoleamine-2,3-dioxygenase (IDO) expression in IFP-MSCs primed with interferon gamma was used as an in vitro potency measurement in investigating the correlations of clinical outcomes. METHODS: Twelve patients with symptomatic knee OA were recruited. IFP adipose tissue was harvested from each patient's knee through surgical excision for IFP-MSC manufacturing. Cryopreserved IFP-MSCs (5 × 107 cells) were injected into the knee joint immediately after thawing. RESULTS: No significant adverse events were observed. Patients who received IFP-MSCs exhibited clinically significant pain and functional improvement at 48-week follow-up. The MRI Osteoarthritis Knee Score average was also significantly reduced from 100.2 before injection to 85.0 at 48 weeks after injection. The IDO expression of the primed IFP-MSCs of the 12 patients was correlated with clinical outcomes after injection. CONCLUSIONS: A single intra-articular injection of IFP-MSCs appears to be a safe therapy for treating knee OA and may improve disease symptoms. IDO measurement of primed IFP-MSCs has potential as a potency marker of MSC products for immunomodulatory therapy.
Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Tejido Adiposo , Humanos , Inyecciones Intraarticulares , Articulación de la Rodilla , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/terapiaRESUMEN
Iron loading has been consistently reported in those with alcohol use disorder (AUD), but its effect on the clinical course of the disease is not yet fully understood. Here, we conducted a cohort study to examine whether peripheral iron measures, genetic variation in HFE rs1799945 and their interaction differed between 594 inpatient participants with alcohol use disorder (AUD) undergoing detoxification and 472 healthy controls (HC). We also assessed whether HFE rs1799945 was associated with elevated peripheral iron and can serve as a predictor of withdrawal severity. AUD patients showed significantly higher serum transferrin saturation than HC. Within the AUD group, transferrin saturation significantly predicted withdrawal symptoms (CIWA-Ar) and cumulative dose of benzodiazepine treatment during the first week of detoxification, which is an indicator of withdrawal severity. HFE rs1799945 minor allele carriers showed elevated transferrin saturation compared to non-carriers, both in AUD and healthy controls. Exploratory analyses indicated that, within the AUD cohort, HFE rs1799945 predicted CIWA withdrawal scores, and this relationship was significantly mediated by transferrin saturation. We provide evidence that serum transferrin saturation predicts alcohol withdrawal severity in AUD. Moreover, our findings replicated previous studies on elevated serum transferrin saturation in AUD and an involvement of HFE rs1799945 in serum transferrin saturation levels in both AUD and healthy controls. Future studies may use transferrin saturation measures as predictors for treatment or potentially treat iron overload to ameliorate withdrawal symptoms.