Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2115231119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500118

RESUMEN

Piecing together the history of carbon (C) perturbation events throughout Earth's history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter­derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse.


Asunto(s)
Calentamiento Global , Agua de Mar , Carbono/análisis , Humanos , Hipoxia , Océanos y Mares
3.
Proc Natl Acad Sci U S A ; 111(9): 3316-21, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24516148

RESUMEN

The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.


Asunto(s)
Evolución Biológica , Ciclo del Carbono/fisiología , Ambiente , Extinción Biológica , Modelos Biológicos , Isótopos de Carbono/análisis , Historia Antigua , Factores de Tiempo , Erupciones Volcánicas/análisis
4.
Sci Adv ; 10(5): eadi7284, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295161

RESUMEN

The end-Permian mass extinction was the most severe ecological event during the Phanerozoic and has long been presumed contemporaneous across terrestrial and marine realms with global environmental deterioration triggered by the Siberian Traps Large Igneous Province. We present high-precision zircon U-Pb geochronology by the chemical abrasion-isotope dilution-thermal ionization mass spectrometry technique on tuffs from terrestrial to transitional coastal settings in Southwest China, which reveals a protracted collapse of the Cathaysian rainforest beginning after the onset of the end-Permian marine extinction. Integrated with high-resolution geochronology from coeval successions, our results suggest that the terrestrial extinction occurred diachronously with latitude, beginning at high latitudes during the late Changhsingian and progressing to the tropics by the early Induan, spanning a duration of nearly 1 million years. This latitudinal age gradient may have been related to variations in surface warming with more degraded environmental conditions at higher latitudes contributing to higher extinction rates.

5.
Sci Adv ; 10(9): eadj5474, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427740

RESUMEN

The surficial cycling of Mg is coupled with the global carbon cycle, a predominant control of Earth's climate. However, how Earth's surficial Mg cycle evolved with time has been elusive. Magnesium isotope signatures of seawater (δ26Mgsw) track the surficial Mg cycle, which could provide crucial information on the carbon cycle in Earth's history. Here, we present a reconstruction of δ26Mgsw evolution over the past 2 billion years using marine halite fluid inclusions and sedimentary dolostones. The data show that δ26Mgsw decreased, with fluctuations, by about 1.4‰ from the Paleoproterozoic to the present time. Mass balance calculations based on this δ26Mgsw record reveal a long-term decline in net dolostone burial (NDB) over the past 2 billion years, due to the decrease in dolomitization in the oceans and the increase in dolostone weathering on the continents. This underlines a previously underappreciated connection between the weathering-burial cycle of dolostone and the Earth's climate on geologic timescales.

6.
Nat Commun ; 13(1): 4856, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982047

RESUMEN

Lakes are a major emitter of the atmospheric greenhouse gas methane (CH4); however, their roles in past climate warming episodes remain poorly understood owing to a scarcity of geological records. Here we report the occurrence of sustained and intensified microbial CH4 cycling in paleo-Lake Junggar in northwestern China, one of the largest known Phanerozoic lakes, during Early Permian climate warming. High-precision U-Pb geochronology refines the age of the upper Lucaogou Formation to the Artinskian, which marks a major glacial-to-postglacial climate transition. The 13C-enriched authigenic dolomites indicate active methanogenesis in the anoxic lake sediments, and 13C-depleted hopanes suggest vigorous methanotrophy in the water column. The intensification of CH4 cycling coincided with increasing global temperature, as evidenced from elevated continental chemical weathering. Our results suggest that the lacustrine CH4 emissions acted as a positive feedback to global warming and contributed to the demise of the Late Paleozoic Ice Age.


Asunto(s)
Biodiversidad , Metano , Clima , Lagos , Temperatura
7.
Natl Sci Rev ; 8(9): nwab027, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691735

RESUMEN

Current barriers hindering data-driven discoveries in deep-time Earth (DE) include: substantial volumes of DE data are not digitized; many DE databases do not adhere to FAIR (findable, accessible, interoperable and reusable) principles; we lack a systematic knowledge graph for DE; existing DE databases are geographically heterogeneous; a significant fraction of DE data is not in open-access formats; tailored tools are needed. These challenges motivate the Deep-Time Digital Earth (DDE) program initiated by the International Union of Geological Sciences and developed in cooperation with national geological surveys, professional associations, academic institutions and scientists around the world. DDE's mission is to build on previous research to develop a systematic DE knowledge graph, a FAIR data infrastructure that links existing databases and makes dark data visible, and tailored tools for DE data, which are universally accessible. DDE aims to harmonize DE data, share global geoscience knowledge and facilitate data-driven discovery in the understanding of Earth's evolution.

8.
Sci Adv ; 7(47): eabh1390, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788084

RESUMEN

The Siberian Traps large igneous province (STLIP) is commonly invoked as the primary driver of global environmental changes that triggered the end-Permian mass extinction (EPME). Here, we explore the contributions of coeval felsic volcanism to end-Permian environmental changes. We report evidence of extreme Cu enrichment in the EPME interval in South China. The enrichment is associated with an increase in the light Cu isotope, melt inclusions rich in copper and sulfides, and Hg concentration spikes. The Cu and Hg elemental and isotopic signatures can be linked to S-rich vapor produced by felsic volcanism. We use these previously unknown geochemical data to estimate volcanic SO2 injections and argue that this volcanism would have produced several degrees of rapid cooling before or coincident with the more protracted global warming. Large-scale eruptions near the South China block synchronous with the EPME strengthen the case that the STLIP may not have been the sole trigger.

9.
Science ; 367(6475): 272-277, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31949075

RESUMEN

One great challenge in understanding the history of life is resolving the influence of environmental change on biodiversity. Simulated annealing and genetic algorithms were used to synthesize data from 11,000 marine fossil species, collected from more than 3000 stratigraphic sections, to generate a new Cambrian to Triassic biodiversity curve with an imputed temporal resolution of 26 ± 14.9 thousand years. This increased resolution clarifies the timing of known diversification and extinction events. Comparative analysis suggests that partial pressure of carbon dioxide (Pco2) is the only environmental factor that seems to display a secular pattern similar to that of biodiversity, but this similarity was not confirmed when autocorrelation within that time series was analyzed by detrending. These results demonstrate that fossil data can provide the temporal and taxonomic resolutions necessary to test (paleo)biological hypotheses at a level of detail approaching those of long-term ecological analyses.


Asunto(s)
Biodiversidad , Dióxido de Carbono , Extinción Biológica , Invertebrados/clasificación , Animales , Evolución Biológica , Fósiles , Invertebrados/genética , Presión Parcial
10.
Science ; 334(6061): 1367-72, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22096103

RESUMEN

The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.


Asunto(s)
Biodiversidad , Ecosistema , Extinción Biológica , Fósiles , Animales , Dióxido de Carbono , Isótopos de Carbono , China , Incendios , Sedimentos Geológicos , Invertebrados/clasificación , Isótopos , Plomo , Espectrometría de Masas , Metano , Océanos y Mares , Plantas/clasificación , Técnica de Dilución de Radioisótopos , Datación Radiométrica , Agua de Mar/química , Tiempo , Uranio , Vertebrados/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA