Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Biol Chem ; 298(5): 101838, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339491

RESUMEN

Calcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca2+-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.2 Å and 2.9 Å, respectively, and one D. rerio CALHM1 octamer with flexible long C-terminal helices at a resolution of 3.5 Å. Structural analysis shows that the heptameric CALHM1s are in an ATP-nonconducting state with a central pore diameter of approximately 6.6 Å. Compared with those inside the octameric CALHM1, the N-helix inside the heptameric CALHM1 is in the "down" position to avoid steric clashing with the adjacent TM1 helix. Molecular dynamics simulations show that as the N-helix moves from the "down" position to the "up" position, the pore size of ATP molecule permeation increases significantly. Our results provide important information for elucidating the mechanism of ATP molecule permeation in the CALHM1 channel.


Asunto(s)
Adenosina Trifosfato , Canales de Calcio , Proteínas de Pez Cebra , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/química , Microscopía por Crioelectrón , Homeostasis , Pez Cebra , Proteínas de Pez Cebra/química
2.
Plant Cell ; 32(9): 2917-2931, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699169

RESUMEN

C-Glycosyltransferases (CGTs) catalyze the formation of C-glycosidic bonds for the biosynthesis of C-glycosides, but the underlying mechanism is unclear. This process improves the solubility and bioavailability of specialized metabolites, which play important roles in plant growth and development and represent rich resources for drug discovery. Here, we performed functional and structural studies of the CGT UGT708C1 from buckwheat (Fagopyrum esculentum). Enzymatic analysis showed that UGT708C1 is capable of utilizing both UDP-galactose and UDP-glucose as sugar donors. Our structural studies of UGT708C1 complexed with UDP-glucose and UDP identified the key roles of Asp382, Gln383, Thr151, and Thr150 in recognizing the sugar moiety of the donor substrate and Phe130, Tyr102, and Phe198 in binding and stabilizing the acceptor. A systematic site-directed mutagenesis study confirmed the important roles of these residues. Further structural analysis combined with molecular dynamics simulations revealed that phloretin binds to the acceptor binding pocket in a bent state with a precise spatial disposition and complementarity. These findings provide insights into a catalytic mechanism for CGTs.


Asunto(s)
Fagopyrum/enzimología , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Glicosilación , Glicosiltransferasas/genética , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Floretina/metabolismo , Proteínas de Plantas/genética , Azúcares/química , Azúcares/metabolismo
3.
J Struct Biol ; 214(1): 107832, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35041979

RESUMEN

ATP-binding cassette subfamily B member 7 (ABCB7) is localized in the inner membrane of mitochondria, playing a critical role in iron metabolism. Here, we determined the structure of the nonhydrolyzable ATP analog adenosine-5'-(ß-γ-imido) triphosphate (AMP-PNP) bound human ABCB7 at 3.3 Å by single-particle electron cryo-microscopy (cryo-EM). The AMP-PNP-bound human ABCB7 shows an inverted V-shaped homodimeric architecture with an inward-facing open conformation. One AMP-PNP molecule and Mg2+ were identified in each nucleotide-binding domain (NBD) of the hABCB7 monomer. Moreover, four disease-causing missense mutations of human ABCB7 have been mapped to the structure, creating a hotspot map for X-linked sideroblastic anemia and ataxia disease. Our results provide a structural basis for further understanding the transport mechanism of the mitochondrial ABC transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Anemia Sideroblástica , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Microscopía por Crioelectrón , Humanos , Mitocondrias/metabolismo
4.
Plant Physiol ; 186(2): 1101-1121, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33744930

RESUMEN

In Arabidopsis thaliana, mitochondrial-localized heat-shock cognate protein 70-1 (mtHSC70-1) plays an important role in vegetativegrowth. However, whether mtHSC70-1 affects reproductive growth remains unknown. Here, we found that the mtHSC70-1 gene was expressed in the provascular cells of the embryo proper from the early heart stage onward during embryogenesis. Phenotypic analyses of mthsc70-1 mutants revealed that mtHSC70 deficiency leads to defective embryo development and that this effect is mediated by auxin. In addition to a dwarf phenotype, the mthsc70-1 mutant displayed defects in flower morphology, anther development, and embryogenesis. At early developmental stages, the mthsc70-1 embryos exhibited abnormal cell divisions in both embryo proper and suspensor cells. From heart stage onward, they displayed an abnormal shape such as with no or very small cotyledon protrusions, had aberrant number of cotyledons, or were twisted. These embryo defects were associated with reduced or ectopic expression of auxin responsive reporter DR5rev:GFP. Consistently, the expression of auxin biosynthesis and polar auxin transport genes were markedly altered in mthsc70-1. On the other hand, mitochondrial retrograde regulation (MRR) was enhanced in mthsc70-1. Treatment of wild-type plants with an inhibitor that activates mitochondrial retrograde signaling reduced the expression level of auxin biosynthesis and polar auxin transport genes and induced phenotypes similar to those of mthsc70-1. Taken together, our data reveal that loss of function of mtHSC70-1 induces MRR, which inhibits auxin biosynthesis and polar auxin transport, leading to abnormal auxin gradients and defective embryo development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/embriología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Cotiledón/embriología , Cotiledón/genética , Cotiledón/fisiología , Flores/embriología , Flores/genética , Flores/fisiología , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Fenotipo
5.
PLoS Biol ; 17(4): e3000096, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31009446

RESUMEN

The Orai channel is characterized by voltage independence, low conductance, and high Ca2+ selectivity and plays an important role in Ca2+ influx through the plasma membrane (PM). How the channel is activated and promotes Ca2+ permeation is not well understood. Here, we report the crystal structure and cryo-electron microscopy (cryo-EM) reconstruction of a Drosophila melanogaster Orai (dOrai) mutant (P288L) channel that is constitutively active according to electrophysiology. The open state of the Orai channel showed a hexameric assembly in which 6 transmembrane 1 (TM1) helices in the center form the ion-conducting pore, and 6 TM4 helices in the periphery form extended long helices. Orai channel activation requires conformational transduction from TM4 to TM1 and eventually causes the basic section of TM1 to twist outward. The wider pore on the cytosolic side aggregates anions to increase the potential gradient across the membrane and thus facilitate Ca2+ permeation. The open-state structure of the Orai channel offers insights into channel assembly, channel activation, and Ca2+ permeation.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Proteína ORAI1/metabolismo , Animales , Calcio/fisiología , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/metabolismo , Proteína ORAI1/genética , Estructura Secundaria de Proteína
6.
Protein Expr Purif ; 193: 106045, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999216

RESUMEN

Transmembrane bax inhibitor-1 motif containing protein 5 (TMBIM5) is located on the inner membrane of mitochondria and is widely expressed in tissues but less frequently in the intestine and thymus. TMBIM5 affects mitochondrial cristae organization and is associated with Parkinson's disease. Here, we present the first report about expression, purification and the 2D classification projections derived from negatively stained electron micrographs of recombinant H. sapiens TMBIM5 (hTMBIM5). The described methods and results will support further structural and functional study of hTMBIM5.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
7.
Mol Cell ; 54(3): 362-77, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24746696

RESUMEN

Mitochondrial autophagy, or mitophagy, is a major mechanism involved in mitochondrial quality control via selectively removing damaged or unwanted mitochondria. Interactions between LC3 and mitophagy receptors such as FUNDC1, which harbors an LC3-interacting region (LIR), are essential for this selective process. However, how mitochondrial stresses are sensed to activate receptor-mediated mitophagy remains poorly defined. Here, we identify that the mitochondrially localized PGAM5 phosphatase interacts with and dephosphorylates FUNDC1 at serine 13 (Ser-13) upon hypoxia or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) treatment. Dephosphorylation of FUNDC1 catalyzed by PGAM5 enhances its interaction with LC3, which is abrogated following knockdown of PGAM5 or the introduction of a cell-permeable unphosphorylated peptide encompassing the Ser-13 and LIR of FUNDC1. We further observed that CK2 phosphorylates FUNDC1 to reverse the effect of PGAM5 in mitophagy activation. Our results reveal a mechanistic signaling pathway linking mitochondria-damaging signals to the dephosphorylation of FUNDC1 by PGAM5, which ultimately induces mitophagy.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Secuencia de Consenso , Retroalimentación Fisiológica , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas , Fosforilación
8.
Biochem Biophys Res Commun ; 557: 187-191, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33872987

RESUMEN

Human ATP-binding cassette transporter 8 of subfamily B (hABCB8) is an ABC transporter that located in the inner membrane of mitochondria. The ABCB8 is involved in the maturation of Fe-S and protects the heart from oxidative stress. Here, we present the cryo-EM structure of human ABCB8 binding with AMPPNP in inward-facing conformation with resolution of 4.1 Å. hABCB8 shows an open-inward conformation when ATP is bound. Unexpectedly, cholesterol molecules were identified in the transmembrane domain of hABCB8. Our results provide structural basis for the transport mechanism of the ABC transporter in mitochondria.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/química , Adenosina Trifosfato/química , Adenilil Imidodifosfato/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Sitios de Unión , Colesterol/química , Microscopía por Crioelectrón , Expresión Génica , Proteínas de Transporte de Membrana/química , Mitocondrias/química , Mitocondrias/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes
9.
Protein Expr Purif ; 183: 105860, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33689857

RESUMEN

The ATP-binding cassette sub-family B member 7 (ABCB7) is a membrane transport protein located on the inner membrane of mitochondria, which could be involved in the transport of heme from the mitochondria to the cytosol. ABCB7 also plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins, and mutations can cause a series of mitochondrial defects. X-linked sideroblastic anemia and ataxia (XLSA-A) is a rare cause of early onset ataxia, which may be overlooked due to the usually mild asymptomatic anemia. The genetic defect has been identified as a mutation in the ABCB7 gene at Xq12-q13. Here, we report the expression, purification and the 2D projections derived from negatively stained electron micrographs of recombinant H. sapiens ABCB7 (hABCB7), paving the way from an atomic structure determination of ABCB7.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Mutación , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Ataxias Espinocerebelosas/enzimología , Ataxias Espinocerebelosas/genética
10.
Biochem J ; 477(13): 2439-2449, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32538427

RESUMEN

The acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades. Here, we determined the crystal structure of the AHAS holoenzyme, revealing the association between the RSU and CSU in an A2B2 mode. Structural analysis in combination with mutational studies demonstrated that the RSU dimer forms extensive interactions with the CSU dimer, in which a conserved salt bridge between R32 and D120 may act as a trigger to open the activation loop of the CSU, resulting in the activation of the CSU by the RSU. Our study reveals the activation mechanism of the AHAS holoenzyme.


Asunto(s)
Acetolactato Sintasa/química , Holoenzimas/química , Regulación Alostérica/fisiología , Cristalografía
11.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072612

RESUMEN

The BAG proteins are a family of multi-functional co-chaperones. In plants, BAG proteins were found to play roles both in abiotic and biotic stress tolerance. However, the function of Arabidopsis BAG2 remains largely unknown, whereas BAG6 is required for plants' defense to pathogens, although it remains unknown whether BAG6 is involved in plants' tolerance to abiotic stresses. Here, we show that both BAG2 and BAG6 are expressed in various tissues and are upregulated by salt, mannitol, and heat treatments and by stress-related hormones including ABA, ethylene, and SA. Germination of bag2, bag6 and bag2 bag6 seeds is less sensitive to ABA compared to the wild type (WT), whereas BAG2 and BAG6 overexpression lines are hypersensitive to ABA. bag2, bag6, and bag2 bag6 plants show higher survival rates than WT in drought treatment but display lower survival rates in heat-stress treatment. Consistently, these mutants showed differential expression of several stress- and ABA-related genes such as RD29A, RD29B, NCED3 and ABI4 compared to the WT. Furthermore, these mutants exhibit lower levels of ROS after drought and ABA treatment but higher ROS accumulation after heat treatment than the WT. These results suggest that BAG2 and BAG6 are negatively involved in drought stress but play a positive role in heat stress in Arabidopsis.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Sequías , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Plant J ; 99(2): 257-269, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30893500

RESUMEN

Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-ß-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-ß-l-rhamnose. The mutant H357Q exhibited activity with both UDP-ß-l-rhamnose and UDP-glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor-His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Hexosiltransferasas/química , Ramnosa/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Análisis Mutacional de ADN , Hexosiltransferasas/metabolismo , Hexosiltransferasas/fisiología , Quercetina/química , Quercetina/metabolismo , Ramnosa/metabolismo
13.
Biochem Biophys Res Commun ; 523(4): 1040-1045, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31973817

RESUMEN

Striga is a parasitic weed that disperses easily, and its seeds can persist in the soil for many years, presenting long-term threats to food security. If SLs stimulate the seed germination of root parasitic weeds before planting, weeds will wither due to no host. Therefore, it is necessary to determine the mechanism of strigolactone (SL) signaling in Striga to reduce the impacts of this parasitic weed. Striga has eleven different kinds of HYPO-SENSITIVE to LIGHT (ShHTL) hydrolases. Different ShHTL hydrolases exhibit distinct responses to SLs, despite these ShHTLs exhibiting more than 60% sequence identity. Currently, structural information is available for only five ShHTL proteins, and more structural information is needed to design Striga germination stimulants or inhibitors. In this paper, we report the crystal structure of ShHTL8, which is determined at a resolution of 1.4 Å. Scanning fluorimetry and HPLC assays indicate that L125, M147, M154 and I194 are important binding sites, and of which L125 may act as a key holder involved in the catalytic reaction. Additionally, the corresponding residue, Y124 of ShHTL1 and F135 of ShHTL2 also play a significant role in the substrate recognition.


Asunto(s)
Lactonas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transducción de Señal , Striga/metabolismo , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Cinética , Ligandos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
14.
Protein Expr Purif ; 173: 105648, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32335303

RESUMEN

The S-adenosylmethionine carrier (SAMC) is a membrane transport protein located on the inner membrane of mitochondria that catalyzes the import of S-adenosylmethionine (SAM) into the mitochondrial matrix. SAMC mutations can cause a series of mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation and biosynthesis. Here, we describe the expression, purification and oligomerization of SAMC. The SAMC genes from three species were cloned into a eukaryotic expression vector with a GFP tag, and confocal microscopy analysis showed that these SAMCs were localized to mitochondria. A BacMam expression system was used for the expression of D. rerio SAMC with a FLAG tag. A size-exclusion chromatography analysis showed that SAMC may form a hexamer. A negative-staining electron microscopy analysis showed that SAMC formed tiny uniform particles and also confirmed the oligomerization of SAMC.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Expresión Génica , Multimerización de Proteína , Proteínas de Pez Cebra , Pez Cebra/genética , Sistemas de Transporte de Aminoácidos/biosíntesis , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/aislamiento & purificación , Animales , Humanos , Masculino , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/aislamiento & purificación
15.
J Biol Chem ; 293(30): 11736-11745, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29884771

RESUMEN

Transient receptor potential mucolipin subfamily 1 (TRPML1) is a nonselective cation channel mainly located in late endosomes and lysosomes. Mutations of the gene encoding human TRPML1 can cause severe lysosomal diseases. The activity of TRPML1 is regulated by both Ca2+ and H+, which are important for its critical physiological functions in membrane trafficking, exocytosis, autophagy, and intracellular signal transduction. However, the molecular mechanism of its dual regulation by Ca2+ and H+ remains elusive. Here, using a mutant screening method in combination with a whole-cell patch clamp technique, we identified a key TRPML1 residue, Asp-472, responsible for both fast calcium-dependent inactivation (FCDI) and slow calcium-dependent inactivation (SCDI) as well as H+ regulation. We also found that, in acidic pH, H+ can significantly delay FCDI and abolish SCDI and thereby presumably facilitate the ion conductance of the human TRPML1 channel. In summary, we have identified a key residue critical for Ca2+-induced inhibition of TRPML1 channel currents and uncovered pH-dependent regulation of this channel, providing vital information regarding the detailed mechanism of action of human TRPML1.


Asunto(s)
Ácido Aspártico/metabolismo , Calcio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ácido Aspártico/análisis , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Técnicas de Placa-Clamp , Canales de Potencial de Receptor Transitorio/química
16.
Protein Expr Purif ; 156: 44-49, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30597216

RESUMEN

The uridine diphosphate glycosyltransferase (UGT) plays the central role in glycosylation of small molecules by transferring sugars to various acceptors including bioactive natural products in plants. UGT89C1 from Arabidopsis thaliana is a novel UGT, a rhamnosyltransferase, specifically recognizes UDP-l-rhamnose as donor. To provide an insight into the sugar specificity for UDP-l-rhamnose and interactions between UGT89C1 and its substrates, the UGT89C1 was expressed in Escherichia coli and purified toward biochemical and structural studies. Enzyme activity assay was performed, and the recombinant UGT89C1 recognized UDP-l-rhamnose and rhamnosylated kaempferol. Crystals of AtUGT89C1 were obtained, they diffracted to 2.7 Šresolution and belonged to space group I41. AtUGT89C1 was also co-crystallized with UDP. Interestingly, two crystal forms were obtained in the same crystallization condition, including the previous I41 crystal form, and the new crystal form that diffracted to 3.0 Šresolution and belonged to space group P21.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/enzimología , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Hexosiltransferasas/química , Hexosiltransferasas/metabolismo , Quempferoles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Azúcares de Uridina Difosfato/metabolismo
17.
EMBO J ; 33(6): 594-604, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514027

RESUMEN

Mitochondrial calcium uptake is a critical event in various cellular activities. Two recently identified proteins, the mitochondrial Ca(2+) uniporter (MCU), which is the pore-forming subunit of a Ca(2+) channel, and mitochondrial calcium uptake 1 (MICU1), which is the regulator of MCU, are essential in this event. However, the molecular mechanism by which MICU1 regulates MCU remains elusive. In this study, we report the crystal structures of Ca(2+)-free and Ca(2+)-bound human MICU1. Our studies reveal that Ca(2+)-free MICU1 forms a hexamer that binds and inhibits MCU. Upon Ca(2+) binding, MICU1 undergoes large conformational changes, resulting in the formation of multiple oligomers to activate MCU. Furthermore, we demonstrate that the affinity of MICU1 for Ca(2+) is approximately 15-20 µM. Collectively, our results provide valuable details to decipher the molecular mechanism of MICU1 regulation of mitochondrial calcium uptake.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Conformación Proteica , Western Blotting , Calorimetría , Cristalización , Escherichia coli , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Ultracentrifugación
18.
Biochem Biophys Res Commun ; 496(1): 127-132, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29307826

RESUMEN

Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria.


Asunto(s)
Canales de Calcio/química , Señalización del Calcio , Calcio/química , Activación del Canal Iónico , Membrana Dobles de Lípidos/química , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales/química , Humanos , Especificidad de la Especie
19.
Proc Natl Acad Sci U S A ; 112(34): 10697-702, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261306

RESUMEN

The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities.


Asunto(s)
Proteínas Portadoras/química , Empalme del ARN/genética , Animales , Proteínas Portadoras/genética , Secuencia Conservada , Dimerización , Progresión de la Enfermedad , Disautonomía Familiar/genética , Disautonomía Familiar/fisiopatología , Histona Acetiltransferasas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Factores de Elongación de Péptidos/química , Fenotipo , Conformación Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Relación Estructura-Actividad , Factores de Elongación Transcripcional
20.
Biochem Biophys Res Commun ; 487(3): 672-677, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28442347

RESUMEN

Mitochondria Ca2+ overload has long been recognized as a cell death trigger. Unexpectedly, we demonstrated a signaling complex composed of Calmodulin (CaM), Arabidopsis thaliana Bcl-2-associated athanogene 5 (AtBAG5) and Heat-shock cognate 70 protein (Hsc70) within Arabidopsis thaliana mitochondria which transduces mitochondria Ca2+ elevations to suppress leaf senescence. Gain- and loss-of-function AtBAG5 mutant plants revealed that, mitochondria Ca2+ elevation significantly increase chlorophyll retention and decrease H2O2 level in dark-induced leaf senescence assay. Based on our findings, we proposed a molecular mechanism in which chronic mitochondria Ca2+ elevation reduced ROS levels and thus inhibits leaf senescence.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Calcio/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/fisiología , Calmodulina/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas Mitocondriales/metabolismo , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA