Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2310052120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165932

RESUMEN

Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.


Asunto(s)
Ecosistema , Kelp , Animales , Cadena Alimentaria , Invertebrados , Biomasa , Bosques
2.
PLoS Biol ; 20(3): e3001160, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35302985

RESUMEN

The spatial distribution of dengue and its vectors (spp. Aedes) may be the widest it has ever been, and projections suggest that climate change may allow the expansion to continue. However, less work has been done to understand how climate variability and change affects dengue in regions where the pathogen is already endemic. In these areas, the waxing and waning of immunity has a large impact on temporal dynamics of cases of dengue haemorrhagic fever. Here, we use 51 years of data across 72 provinces and characterise spatiotemporal patterns of dengue in Thailand, where dengue has caused almost 1.5 million cases over the last 30 years, and examine the roles played by temperature and dynamics of immunity in giving rise to those patterns. We find that timescales of multiannual oscillations in dengue vary in space and time and uncover an interesting spatial phenomenon: Thailand has experienced multiple, periodic synchronisation events. We show that although patterns in synchrony of dengue are similar to those observed in temperature, the relationship between the two is most consistent during synchronous periods, while during asynchronous periods, temperature plays a less prominent role. With simulations from temperature-driven models, we explore how dynamics of immunity interact with temperature to produce the observed patterns in synchrony. The simulations produced patterns in synchrony that were similar to observations, supporting an important role of immunity. We demonstrate that multiannual oscillations produced by immunity can lead to asynchronous dynamics and that synchrony in temperature can then synchronise these dengue dynamics. At higher mean temperatures, immune dynamics can be more predominant, and dengue dynamics more insensitive to multiannual fluctuations in temperature, suggesting that with rising mean temperatures, dengue dynamics may become increasingly asynchronous. These findings can help underpin predictions of disease patterns as global temperatures rise.


Asunto(s)
Dengue , Epidemias , Dengue/epidemiología , Humanos , Incidencia , Mosquitos Vectores , Temperatura , Tailandia/epidemiología
3.
Ecol Lett ; 25(5): 1189-1201, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35246946

RESUMEN

Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, 'tail-dependent' follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.


Asunto(s)
Geraniaceae , Kelp , Macrocystis , Ecosistema , Geografía
4.
Ecol Lett ; 25(8): 1854-1868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771209

RESUMEN

Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Nutrientes
5.
Ecol Lett ; 24(2): 337-347, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33314559

RESUMEN

Population cycles are fundamentally linked with spatial synchrony, the prevailing paradigm being that populations with cyclic dynamics are easily synchronised. That is, population cycles help give rise to spatial synchrony. Here we demonstrate this process can work in reverse, with synchrony causing population cycles. We show that timescale-specific environmental effects, by synchronising local population dynamics on certain timescales only, cause major population cycles over large areas in white-tailed deer. An important aspect of the new mechanism is specificity of synchronising effects to certain timescales, which causes local dynamics to sum across space to a substantial cycle on those timescales. We also demonstrate, to our knowledge for the first time, that synchrony can be transmitted not only from environmental drivers to populations (deer), but also from there to human systems (deer-vehicle collisions). Because synchrony of drivers may be altered by climate change, changes to population cycles may arise via our mechanism.


Asunto(s)
Ciervos , Mariposas Nocturnas , Animales , Cambio Climático , Humanos , Dinámica Poblacional
6.
PLoS Comput Biol ; 15(3): e1006744, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30921328

RESUMEN

Large-scale spatial synchrony is ubiquitous in ecology. We examined 56 years of data representing chlorophyll density in 26 areas in British seas monitored by the Continuous Plankton Recorder survey. We used wavelet methods to disaggregate synchronous fluctuations by timescale and determine that drivers of synchrony include both biotic and abiotic variables. We tested these drivers for statistical significance by comparison with spatially synchronous surrogate data. Identification of causes of synchrony is distinct from, and goes beyond, determining drivers of local population dynamics. We generated timescale-specific models, accounting for 61% of long-timescale (> 4yrs) synchrony in a chlorophyll density index, but only 3% of observed short-timescale (< 4yrs) synchrony. Thus synchrony and its causes are timescale-specific. The dominant source of long-timescale chlorophyll synchrony was closely related to sea surface temperature, through a climatic Moran effect, though likely via complex oceanographic mechanisms. The top-down action of Calanus finmarchicus predation enhances this environmental synchronising mechanism and interacts with it non-additively to produce more long-timescale synchrony than top-down and climatic drivers would produce independently. Our principal result is therefore a demonstration of interaction effects between Moran drivers of synchrony, a new mechanism for synchrony that may influence many ecosystems at large spatial scales.


Asunto(s)
Clima , Océanos y Mares , Fitoplancton/metabolismo , Clorofila/metabolismo , Ecosistema
7.
Proc Natl Acad Sci U S A ; 114(26): 6788-6793, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28559312

RESUMEN

Taylor's law (TL) is a widely observed empirical pattern that relates the variances to the means of groups of nonnegative measurements via an approximate power law: variance g ≈ a [Formula: see text] mean gb , where g indexes the group of measurements. When each group of measurements is distributed in space, the exponent b of this power law is conjectured to reflect aggregation in the spatial distribution. TL has had practical application in many areas since its initial demonstrations for the population density of spatially distributed species in population ecology. Another widely observed aspect of populations is spatial synchrony, which is the tendency for time series of population densities measured in different locations to be correlated through time. Recent studies showed that patterns of population synchrony are changing, possibly as a consequence of climate change. We use mathematical, numerical, and empirical approaches to show that synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony influences the exponent of TL widely in ecologically and economically important systems.

8.
J Anim Ecol ; 88(3): 484-494, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30474262

RESUMEN

Taylor's law (TL), a commonly observed and applied pattern in ecology, describes variances of population densities as related to mean densities via log(variance) = log(a) + b*log(mean). Variations among datasets in the slope, b, have been associated with multiple factors of central importance in ecology, including strength of competitive interactions and demographic rates. But these associations are not transparent, and the relative importance of these and other factors for TL slope variation is poorly studied. TL is thus a ubiquitously used indicator in ecology, the understanding of which is still opaque. The goal of this study was to provide tools to help fill this gap in understanding by providing proximate determinants of TL slopes, statistical quantities that are correlated to TL slopes but are simpler than the slope itself and are more readily linked to ecological factors. Using numeric simulations and 82 multi-decadal population datasets, we here propose, test and apply two proximate statistical determinants of TL slopes which we argue can become key tools for understanding the nature and ecological causes of TL slope variation. We find that measures based on population skewness, coefficient of variation and synchrony are effective proximate determinants. We demonstrate their potential for application by using them to help explain covariation in slopes of spatial and temporal TL (two common types of TL). This study provides tools for understanding TL, and demonstrates their usefulness.


Asunto(s)
Ecología , Modelos Biológicos , Animales , Densidad de Población
9.
Ecol Lett ; 20(7): 801-814, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28547786

RESUMEN

Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application.


Asunto(s)
Ecología , Geografía , Dinámica Poblacional
10.
Glob Chang Biol ; 22(6): 2069-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26810148

RESUMEN

During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.


Asunto(s)
Cambio Climático , Ecosistema , Plancton/fisiología , Animales , Copépodos/fisiología , Decápodos/fisiología , Diatomeas/fisiología , Cadena Alimentaria , Mar del Norte , Dinámica Poblacional , Análisis Espacio-Temporal , Temperatura
11.
Ecology ; 103(4): e3650, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112356

RESUMEN

Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.


Asunto(s)
Ecosistema , Dinámica Poblacional
12.
Ecol Evol ; 10(23): 12764-12776, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304492

RESUMEN

Standard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population-density variables of co-located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi-species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community's constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co-located species commonly show asymmetric tail associations; that is, it is common for two species' densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co-located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species' population-density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.

13.
Ecol Evol ; 10(10): 4471-4482, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489611

RESUMEN

Periodical cicadas exhibit an extraordinary capacity for self-organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17-year periodical cicada species Magicicada cassini is found to form synchronized choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony.Cicada choruses were observed to form in trees, calling regularly every five seconds. In order to determine the limits of this self-organizing behavior, we set out to quantify the spatial synchronization between cicada call choruses in different trees, and how and why this varies in space and time.We performed 20 simultaneous recordings in Clinton State Park, Kansas, in June 2015 (Brood IV), with a team of citizen-science volunteers using consumer equipment (smartphones). We use a wavelet approach to show in detail how spatially synchronous, self-organized chorusing varies across the forest.We show how conditions that increase the strength of audio interactions between cicadas also increase the spatial synchrony of their chorusing. Higher forest canopy light levels increase cicada activity, corresponding to faster and higher-amplitude chorus cycling and to greater synchrony of cycles across space. We implemented a relaxation-oscillator-ensemble model of interacting cicadas, finding that a tendency to call more often, driven by light levels, results in all these effects.Results demonstrate how the capacity to self-organize in ecology depends sensitively on environmental conditions. Spatially correlated modulation of cycling rate by an external driver can also promote self-organization of phase synchrony.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA