Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Reprod ; 39(5): 1023-1041, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511208

RESUMEN

STUDY QUESTION: How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases? SUMMARY ANSWER: During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells. WHAT IS KNOWN ALREADY: Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations. How OS impacts the glandular, stromal, immune, and vascular compartments of the endometrium, in the periovulatory period as compared to the window of implantation, is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study carried out between 2020 and 2022 included 25 subjects undergoing OS and 25 subjects in natural menstrual cycles. Endometrial biopsies were performed in the proliferative, periovulatory, and mid-secretory phases. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blood samples were processed to determine serum estradiol and progesterone levels. Both the endometrial transcriptome and the principal cellular compartments of the endometrium, including glands, stroma, immune, and vasculature, were evaluated by examining endometrial dating, differential gene expression, protein expression, cell populations, and the three-dimensional structure in endometrial tissue. Mann-Whitney U tests, unpaired t-tests or one-way ANOVA and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: In the periovulatory period, OS induced high levels of differential gene expression, glandular-stromal dyssynchrony, and an increase in both glandular epithelial volume and the frequency of endometrial monocytes/macrophages. In the window of implantation during the mid-secretory phase, OS induced changes in endometrial immune cells, with a greater frequency of B cells and a lower frequency of CD4 effector T cells. LARGE SCALE DATA: The data underlying this article have been uploaded to the Genome Expression Omnibus/National Center for Biotechnology Information with accession number GSE220044. LIMITATIONS, REASONS FOR CAUTION: A limited number of subjects were included in this study, although the subjects within each group, natural cycle or OS, were homogenous in their clinical characteristics. The number of subjects utilized was sufficient to identify significant differences; however, with a larger number of subjects and additional power, we may detect additional differences. Another limitation of the study is that proliferative phase biopsies were collected in natural cycles, but not in OS cycles. Given that the OS cycle subjects did not have known endometrial factor infertility, and the comparisons involved subjects who had a similar and robust response to stimulation, the findings are generalizable to women with a normal response to OS. WIDER IMPLICATIONS OF THE FINDINGS: OS substantially altered the periovulatory phase endometrium, with fewer transcriptomic and cell type-specific changes in the mid-secretory phase. Our findings show that after OS, the endometrial microenvironment in the window of implantation possesses many more similarities to that of a natural cycle than does the periovulatory endometrium. Further investigation of the immune compartment and the functional significance of this cellular compartment under OS conditions is warranted. STUDY FUNDING/COMPETING INTERESTS: Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (R01AI148695 to A.M.B. and N.C.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD109152 to R.A.), and the March of Dimes (5-FY20-209 to R.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or March of Dimes. All authors declare no conflict of interest.


Asunto(s)
Endometrio , Inducción de la Ovulación , Transcriptoma , Humanos , Femenino , Endometrio/metabolismo , Adulto , Microambiente Celular , Estudios Prospectivos , Estradiol/sangre , Implantación del Embrión/fisiología , Progesterona/sangre , Progesterona/metabolismo , Embarazo , Ciclo Menstrual
2.
Reproduction ; 166(2): 161-174, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37252830

RESUMEN

In brief: Endometrial stromal cell motility is fundamental to regeneration and repair of this tissue and crucial for successful reproduction. This paper shows a role for the mesenchymal stem cell (MSC) secretome in enhancing endometrial stromal cell motility. Abstract: Cyclic regeneration and repair of the endometrium are crucial for successful reproduction. Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) facilitate tissue repair via their secretome, which contains growth factors and cytokines that promote wound healing. Despite the implication of MSCs in endometrial regeneration and repair, mechanisms remain unclear. This study tested the hypothesis that the BM-MSC and UC-MSC secretomes upregulate human endometrial stromal cell (HESC) proliferation, migration, and invasion and activate pathways to increase HESC motility. BM-MSCs were purchased from ATCC and cultured from the BM aspirate of three healthy female donors. UC-MSCs were cultured from umbilical cords of two healthy male term infants. Using indirect co-culture of MSCs and hTERT-immortalized HESCs via a transwell system, we demonstrated that co-culture of HESCs with BM-MSCs or UC-MSCs from all donors significantly increased HESC migration and invasion, whereas effects on HESC proliferation varied among BM-MSC and UC-MSC donors. Analysis of gene expression by mRNA sequencing and RT-qPCR showed that expression of CCL2 and HGF was upregulated in HESCs that had been cocultured with BM-MSCs or UC-MSCs. Validation studies revealed that exposure to recombinant CCL2 for 48 h significantly increased HESC migration and invasion. Increased HESC motility by the BM-MSC and UC-MSC secretome appears to be mediated in part by upregulated HESC CCL2 expression. Our data support the potential for leveraging MSC secretome as a novel cell-free therapy to treat disorders of endometrial regeneration.


Asunto(s)
Endometrio , Células Madre Mesenquimatosas , Secretoma , Células del Estroma , Femenino , Humanos , Masculino , Diferenciación Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular , Técnicas de Cocultivo , Endometrio/citología , Endometrio/metabolismo , Células Epiteliales , Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Secretoma/metabolismo , Células del Estroma/metabolismo , Células del Estroma/fisiología , Regulación hacia Arriba , Células de la Médula Ósea/fisiología , Cordón Umbilical/citología , Cordón Umbilical/fisiología
3.
Semin Cell Dev Biol ; 95: 111-119, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30922957

RESUMEN

As treatments for diseases throughout the body progress, treatment for many brain diseases has been at a standstill due to difficulties in drug delivery. While new drugs are being discovered in vitro, these therapies are often hindered by inefficient tissue distribution and, more commonly, an inability to cross the blood brain barrier. Mesenchymal stem cells are thus being investigated as a delivery tool to directly target therapies to the brain to treat wide array of brain diseases. This review discusses the use of mesenchymal stem cells in hypoxic disease (hypoxic ischemic encephalopathy), an inflammatory neurodegenerative disease (multiple sclerosis), and a malignant condition (glioma).


Asunto(s)
Encefalopatías/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Barrera Hematoencefálica/patología , Micropartículas Derivadas de Células/metabolismo , Microambiente Celular , Humanos , Células Madre Mesenquimatosas/inmunología
4.
Neuroimage ; 197: 264-272, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30978496

RESUMEN

Alcohol and peer influence are known to have independent effects on risky decision making. We investigated combined influences of peers and alcohol on functional brain connectivity and behavior. Young adults underwent fMRI while completing response inhibition (Go/No-Go) and risky driving (Stoplight) tasks. Intoxicated participants made more mistakes on Go/No-Go, and showed diminished connectivity between the anterior insular cortex (AIC) and regions implicated in executive function (e.g., dorsal anterior cingulate). During the Stoplight game, peer observation was associated with increased connectivity between the AIC and regions implicated in social cognition (e.g., ventromedial prefrontal cortex). Alcohol and peers also exerted interactive influences, such that some connectivity changes only occurred when participants were observed by peers and under the influence of alcohol. These findings suggest that brain systems underlying decision making function differently under the combined influence of alcohol and peers, and highlight mechanisms through which this combination of factors is particularly risky for youth.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Toma de Decisiones/efectos de los fármacos , Toma de Decisiones/fisiología , Etanol/administración & dosificación , Influencia de los Compañeros , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Conducta Social , Adulto Joven
5.
Child Dev ; 89(1): 37-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28612930

RESUMEN

Mobile social media often feature the ability to "Like" content posted by others. This study examined the effect of Likes on youths' neural and behavioral responses to photographs. High school and college students (N = 61, ages 13-21) viewed theirs and others' Instagram photographs while undergoing functional Magnetic Resonance Imaging (fMRI). Participants more often Liked photographs that appeared to have received many (vs. few) Likes. Popular photographs elicited greater activity in multiple brain regions, including the nucleus accumbens (NAcc), a hub of the brain's reward circuitry. NAcc responsivity increased with age for high school but not college students. When viewing images depicting risk-taking (vs. nonrisky photographs), high school students, but not college students, showed decreased activation of neural regions implicated in cognitive control.


Asunto(s)
Corteza Cerebral/fisiología , Función Ejecutiva/fisiología , Reconocimiento Facial/fisiología , Núcleo Accumbens/fisiología , Influencia de los Compañeros , Fotograbar , Asunción de Riesgos , Conducta Social , Medios de Comunicación Sociales , Percepción Social , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Núcleo Accumbens/diagnóstico por imagen , Adulto Joven
6.
Cytotherapy ; 19(1): 19-27, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765601

RESUMEN

Mesenchymal stromal/stem cells (MSC) have emerged as a class of cells suitable for cellular delivery of nanoparticles, drugs and micro-RNA cargo for targeted treatments such as tumor and other protective mechanisms. The special properties of MSC underscore the current use for various clinical applications. Examples of applications include but are not limited to regenerative medicine, immune disorders and anti-cancer therapies. In recent years, there has been intense research in modifying MSC to achieve targeted and efficient clinical outcomes. This review discusses effects of MSC in an inflammatory microenvironment and then explains how these properties could be important to the overall application of MSC in cell therapy. The article also advises caution in the application of these cells because of their role in tumorigenesis. The review stresses the use of MSC as vehicles for drug delivery and discusses the accompanying challenges, based on the influence of the microenvironment on MSC.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Células Madre Mesenquimatosas/fisiología , Neovascularización Patológica/etiología , Antineoplásicos/farmacología , Ingeniería Genética , Humanos , Inflamación/patología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/inmunología , Neoplasias/terapia , Medicina Regenerativa/métodos
7.
Psychol Sci ; 27(7): 1027-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27247125

RESUMEN

We investigated a unique way in which adolescent peer influence occurs on social media. We developed a novel functional MRI (fMRI) paradigm to simulate Instagram, a popular social photo-sharing tool, and measured adolescents' behavioral and neural responses to likes, a quantifiable form of social endorsement and potential source of peer influence. Adolescents underwent fMRI while viewing photos ostensibly submitted to Instagram. They were more likely to like photos depicted with many likes than photos with few likes; this finding showed the influence of virtual peer endorsement and held for both neutral photos and photos of risky behaviors (e.g., drinking, smoking). Viewing photos with many (compared with few) likes was associated with greater activity in neural regions implicated in reward processing, social cognition, imitation, and attention. Furthermore, when adolescents viewed risky photos (as opposed to neutral photos), activation in the cognitive-control network decreased. These findings highlight possible mechanisms underlying peer influence during adolescence.


Asunto(s)
Conducta del Adolescente/fisiología , Encéfalo/fisiología , Conducta Imitativa/fisiología , Grupo Paritario , Recompensa , Asunción de Riesgos , Percepción Social , Adolescente , Conducta del Adolescente/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
8.
Stem Cell Rev Rep ; 20(1): 218-236, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851277

RESUMEN

Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedades Neuroinflamatorias , Humanos , Células U937 , Macrófagos , Citocinas/metabolismo , Receptores Purinérgicos/metabolismo
9.
AJOG Glob Rep ; 4(1): 100319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38440154

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders are a complex range of placental pathologies that are associated with significant maternal morbidity and mortality. A diagnosis of placenta accreta spectrum relies on ultrasonographic findings with modest positive predictive value. Exosomal microRNAs are small RNA molecules that reflect the cellular processes of the origin tissues. OBJECTIVE: We aimed to explore exosomal microRNA expression to understand placenta accreta spectrum pathology and clinical use for placenta accreta spectrum detection. STUDY DESIGN: This study was a biomarker analysis of prospectively collected samples at 2 academic institutions from 2011 to 2022. Plasma specimens were collected from patients with suspected placenta accreta spectrum, placenta previa, or repeat cesarean deliveries. Exosomes were quantified and characterized by nanoparticle tracking analysis and western blotting. MicroRNA were assessed by polymerase chain reaction array and targeted single quantification. MicroRNA pathway analysis was performed using the Ingenuity Pathway Analyses software. Placental biopsies were taken from all groups and analyzed by polymerase chain reaction and whole cell enzyme-linked immunosorbent assay. Receiver operating characteristic curve univariate analysis was performed for the use of microRNA in the prediction of placenta accreta spectrum. Clinically relevant outcomes were collected from abstracted medical records. RESULTS: Plasma specimens were analyzed from a total of 120 subjects (60 placenta accreta spectrum, 30 placenta previa, and 30 control). Isolated plasma exosomes had a mean size of 71.5 nm and were 10 times greater in placenta accreta spectrum specimens (20 vs 2 particles/frame). Protein expression of exosomes was positive for intracellular adhesion molecule 1, flotilin, annexin, and CD9. MicroRNA analysis showed increased detection of 3 microRNAs (mir-92, -103, and -192) in patients with placenta accreta spectrum. Pathway interaction assessment revealed differential regulation of p53 signaling in placenta accreta spectrum and of erythroblastic oncogene B2 or human epidermal growth factor 2 in control specimens. These findings were subsequently confirmed in placental protein analysis. Placental microRNA paralleled plasma exosomal microRNA expression. Biomarker assessment of placenta accreta spectrum signature microRNA had an area under the receiver operating characteristic curve of 0.81 (P<.001; 95% confidence interval, 0.73-0.89) with a sensitivity and specificity of 89.2% and 80%, respectively. CONCLUSION: In this large cohort, plasma exosomal microRNA assessment revealed differentially expressed pathways in placenta accreta spectrum, and these microRNAs are potential biomarkers for the detection of placenta accreta spectrum.

10.
Differentiation ; 84(2): 214-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22824626

RESUMEN

Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin ßIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Neurogénesis , Neuronas/metabolismo , Fenotipo , Adipogénesis , Animales , Antígenos de Superficie/metabolismo , Gatos , Células Cultivadas , Potenciales Postsinápticos Excitadores , Humanos , Neuronas/citología , Osteogénesis , Especificidad de la Especie
11.
J Biomed Mater Res A ; 111(8): 1135-1150, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36708060

RESUMEN

Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG-mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor-beta3 (TGF-ß3) sequestration, as measured by rate of association, was higher for sulfated cellulose-containing scaffolds as compared to native GAGs. In addition, TGF-ß3 sequestration and retention over time was highest for NaCS-containing scaffolds. Sulfated cellulose-containing scaffolds loaded with TGF-ß3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS-containing scaffolds loaded with TGF-ß3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF-ß3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF-ß receptor (TGF- ßRI)-phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF-ß3-induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.


Asunto(s)
Cartílago Articular , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta3/farmacología , Factor de Crecimiento Transformador beta3/metabolismo , Condrogénesis , Andamios del Tejido , Cartílago Articular/metabolismo , Celulosa/farmacología , Sulfatos de Condroitina/farmacología
12.
Front Endocrinol (Lausanne) ; 14: 1268990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38344687

RESUMEN

The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.


Asunto(s)
Infertilidad Femenina , Células Madre Mesenquimatosas , Enfermedades Uterinas , Adulto , Femenino , Humanos , Cicatriz , Endometrio/patología , Útero/metabolismo , Enfermedades Uterinas/metabolismo , Infertilidad Femenina/metabolismo
13.
Placenta ; 137: 49-58, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37071955

RESUMEN

INTRODUCTION: Preeclampsia (PE) affects 2-8% of all pregnancies, and is the leading cause of maternal and fetal morbidity and mortality. We reported on pathophysiological changes in placenta mesenchymal stem cells (P-MSCs) in PE. P-MSCs can be isolated from different layers of the placenta at the interface between the fetus and mother. The ability of MSCs from other sources to be immune licensed as immune suppressor cells indicated that P-MSCs could mitigate fetal rejection. Acetylsalicylic acid (aspirin) is indicated for treating PE. Indeed, low-dose aspirin is recommended to prevent PE in high risk patients. METHODS: We conducted robust computational analyses to study changes in gene expression in P-MSCs from PE and healthy term pregnancies as compared with PE-MSCs treated with low dose acetyl salicylic acid (LDA). Confocal microscopy studied phospho-H2AX levels in P-MSCs. RESULTS: We identified changes in >400 genes with LDA, similar to levels of healthy pregnancy. The top canonical pathways that incorporate these genes were linked to DNA repair damage - Basic excision repair (BER), Nucleotide excision repair (NER) and DNA replication. A role for the sumoylation (SUMO) pathway, which could regulate gene expression and protein stabilization was significant although reduced as compared to BER and NER pathways. Labeling for phopho-H2AX indicated no evidence of double strand break in PE P-MSCs. DISCUSSION: The overlapping of key genes within each pathway suggested a major role for LDA in the epigenetic landscape of PE P-MSCs. Overall, this study showed a new insight into how LDA reset the P-MSCs in PE subjects around the DNA.


Asunto(s)
Células Madre Mesenquimatosas , Preeclampsia , Humanos , Femenino , Embarazo , Aspirina/farmacología , Aspirina/uso terapéutico , Preeclampsia/metabolismo , Placenta/metabolismo , Epigénesis Genética , Células Madre Mesenquimatosas/metabolismo , Ácido Salicílico/metabolismo
14.
Aging (Albany NY) ; 15(9): 3230-3248, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36996499

RESUMEN

Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Humanos , Femenino , Antígeno B7-H1/genética , Médula Ósea/patología , Neoplasias de la Mama/patología
15.
Stem Cell Rev Rep ; 18(8): 3066-3082, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35908144

RESUMEN

Preeclampsia (PE) is a pregnancy-specific disease, occurring in ~ 2-10% of all pregnancies. PE is associated with increased maternal and perinatal morbidity and mortality, hypertension, proteinuria, disrupted artery remodeling, placental ischemia and reperfusion, and inflammation. The mechanism of PE pathogenesis remains unresolved explaining limited treatment. Aspirin is used to reduce the risk of developing PE. This study investigated aspirin's effect on PE-derived placenta mesenchymal stem cells (P-MSCs). P-MSCs from chorionic membrane (CM), chorionic villi, membranes from the maternal and amniotic regions, and umbilical cord were similar in morphology, phenotype and multipotency. Since CM-derived P-MSCs could undergo long-term passages, the experimental studies were conducted with this source of P-MSCs. Aspirin (1 mM) induced significant functional and transcriptomic changes in PE-derived P-MSCs, similar to healthy P-MSCs. These include cell cycle quiescence, improved angiogenic pathways, and immune suppressor potential. The latter indicated that aspirin could induce an indirect program to mitigate PE-associated inflammation. As a mediator of activating the DNA repair program, aspirin increased p53, and upregulated genes within the basic excision repair pathway. The robust ability for P-MSCs to maintain its function with high dose aspirin contrasted bone marrow (M) MSCs, which differentiated with eventual senescence/aging with 100 fold less aspirin. This difference cautions how data from other MSC sources are extrapolated to evaluate PE pathogenesis. Dysfunction among P-MSCs in PE involves a network of multiple pathways that can be restored to an almost healthy functional P-MSC. The findings could lead to targeted treatment for PE.


Asunto(s)
Células Madre Mesenquimatosas , Preeclampsia , Humanos , Femenino , Embarazo , Preeclampsia/genética , Preeclampsia/metabolismo , Placenta , Transcriptoma/genética , Aspirina/farmacología , Aspirina/metabolismo , Células Madre , Inflamación/metabolismo
16.
Appl Ergon ; 97: 103495, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34298388

RESUMEN

The United States is facing an unprecedented epidemic of opioid addiction and death due to opioid overdose. In an effort to improve patient knowledge and safe use about opioids, an Electronic Medication Complete Communication (EMC2) opioid strategy was developed targeting opioid naïve patients in the Emergency Department (ED). We conducted pre and post sociotechnical systems analyses to evaluate the variance between the process before the intervention and whether or not the process changed as expected with the new intervention. Results were analyzed using thematic qualitative analysis. Sociotechnical systems modeling illustrates the complexity of designing interventions for emergency medicine that affect multiple patients, providers, work systems, technologies, and processes. The post work systems model illustrates that several elements in the external ED environment can affect the effectiveness of the intervention. Sociotechnical systems analysis is an effective tool to illustrate the opportunities for designing health system interventions and evaluating the fidelity of such interventions.


Asunto(s)
Analgésicos Opioides , Medicina de Emergencia , Servicio de Urgencia en Hospital , Humanos , Pautas de la Práctica en Medicina , Análisis de Sistemas , Estados Unidos
17.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546275

RESUMEN

Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.

18.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762598

RESUMEN

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Asunto(s)
Células de la Médula Ósea , Micropartículas Derivadas de Células , Senescencia Celular/fisiología , Hematopoyesis/fisiología , Adulto , Anciano , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiología , Femenino , Sangre Fetal/citología , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Secretoma , Adulto Joven
19.
Stem Cell Rev Rep ; 17(6): 2178-2192, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34410592

RESUMEN

Mesenchymal stem cells (MSCs) can become dysfunctional in patients with hematological disorders. An unanswered question is whether age-linked disruption of the bone marrow (BM) microenvironment is secondary to hematological dysfunction or vice versa. We therefore studied MSC function in patients with different hematological disorders and found decreased MHC-II except from one sample with acute myeloid leukemia (AML). The patients' MSCs were able to exert veto properties except for AML MSCs. While the expression of MHC-II appeared to be irrelevant to the immune licensing of MSCs, AML MSCs lost their ability to differentiate upon contact and rather, continued to proliferate, forming foci-like structures. We performed a retrospective study that indicated a significant increase in MSCs, based on phenotype, for patients with BM fibrosis. This suggests a role for MSCs in patients transitioning to leukemia. NFĸB was important to MSC function and was shown to be a potential target to sensitize leukemic CD34+/CD38- cells to azacitidine. This correlated with their lack of allogeneic stimulation. This study identified NFĸB as a potential target for combination therapy to treat leukemia stem cells and showed that understanding MSC biology and immune response could be key in determining how the aging BM might support leukemia. More importantly, we show how MSCs might be involved in transitioning the high risk patient with hematological disorder to AML.


Asunto(s)
Neoplasias Hematológicas , Células Madre Mesenquimatosas , Células de la Médula Ósea , Proliferación Celular , Neoplasias Hematológicas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Estudios Retrospectivos , Microambiente Tumoral
20.
Cancer Res ; 81(6): 1567-1582, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33500249

RESUMEN

In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-ß-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.


Asunto(s)
Médula Ósea/patología , Neoplasias de la Mama/patología , Desdiferenciación Celular , Células Madre Mesenquimatosas/patología , Células Madre Neoplásicas/patología , Adolescente , Adulto , Animales , Biopsia , Reparación del ADN , Exosomas/metabolismo , Femenino , Voluntarios Sanos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA