Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytometry A ; 105(6): 458-463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511720

RESUMEN

Full spectrum flow cytometry is a powerful tool for immune monitoring on a single-cell level and with currently available machines, panels of 40 or more markers per sample are possible. However, with an increased panel size, spectral unmixing issues arise, and appropriate single stain reference controls are required for accurate experimental results and to avoid unmixing errors. In contrast to conventional flow cytometry, full spectrum flow cytometry takes into account even minor differences in spectral signatures and requires the full spectrum of each fluorochrome to be identical in the reference control and the fully stained sample to ensure accurate and reliable results. In general, using the cells of interest is considered optimal, but certain markers may not be expressed at sufficient levels to generate a reliable positive control. In this case, compensation beads show some significant advantages as they bind a consistent amount of antibody independent of its specificity. In this study, we evaluated two types of manufactured compensation beads for use as reference controls for 30 of the most commonly used and commercially available fluorochromes in full spectrum cytometry and compared them to human and murine primary leukocytes. While most fluorochromes show the same spectral profile on beads and cells, we demonstrate that specific fluorochromes show a significantly different spectral profile depending on which type of compensation beads is used, and some fluorochromes should be used on cells exclusively. Here, we provide a list of important considerations when selecting optimal reference controls for full spectrum flow cytometry.


Asunto(s)
Citometría de Flujo , Colorantes Fluorescentes , Citometría de Flujo/métodos , Humanos , Animales , Ratones , Colorantes Fluorescentes/química , Leucocitos/citología , Leucocitos/metabolismo , Microesferas
2.
Artículo en Inglés | MEDLINE | ID: mdl-39252408

RESUMEN

The gut-liver axis includes the bidirectional communication between the gut and the liver, and thus covers signals from liver-to-gut and from gut-to-liver. Disruptions of the gut-liver axis have been associated with the progression of chronic liver diseases, including alcohol-related and metabolic dysfunction-associated steatotic liver disease and cholangiopathies. Immune cells and their expression of pattern recognition receptors, activation markers or immune checkpoints might play an active role in the communication between gut and liver. Here, we present a 26-color full spectrum flow cytometry panel for human cells to decipher the role of circulating immune cells in gut-liver communication during the progression of chronic liver diseases in a non-invasive manner, which has been optimized to be used on patient-derived whole blood samples, the most abundantly available clinical material. Our panel focuses on changes in pattern recognition receptors, including toll-like receptors (TLRs) or Dectin-1, and also includes other immunomodulatory molecules such as bile acid receptors and checkpoint molecules. Moreover, this panel can be utilized to follow the progression of chronic liver diseases and could be used as a tool to evaluate the efficiency of therapeutic targets directed against microbial mediators or modulating immune cell activation.

3.
Cytometry B Clin Cytom ; 104(5): 367-373, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209003

RESUMEN

Immune monitoring of patients on a single-cell level is becoming increasingly important in various diseases. Due to the often very limited availability of human specimens and our increased understanding of the immune systems there is an increasing demand to analyze as many markers as possible simultaneously in one panel. Full spectrum flow cytometry is emerging as a powerful tool for immune monitoring since 5-laser instruments enable characterization of 40 parameters or more in a single sample. Nevertheless, even if only machines with fewer lasers are available, development of novel fluorophore families enables increasing panel sizes. Here, we demonstrate that careful panel design enables the use of 31-color panels on a 3-laser Cytek® Aurora cytometer for analyzing human peripheral blood leukocytes, without the need for custom configuration and using only commercially available fluorochromes. The panel presented here should serve as an example of a 31-fluorochrome combination that can be resolved on a 3-laser full spectrum cytometer and that can be adapted to comprise other (and possibly more) markers of interest depending on the research focus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA