Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(4): e22, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34850128

RESUMEN

MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.


Asunto(s)
MicroARNs , Análisis Costo-Beneficio , Cartilla de ADN/genética , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Cell Mol Biol Lett ; 28(1): 104, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093179

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS: The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS: HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION: Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratones , Apoptosis , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Degeneración del Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Proteínas Represoras/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
3.
Cell Mol Life Sci ; 79(8): 427, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842562

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.


Asunto(s)
ARN Largo no Codificante , Sarcoma , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , ARN Largo no Codificante/genética , Sarcoma/genética , Sarcoma/terapia , Microambiente Tumoral/genética
4.
J Cell Mol Med ; 25(6): 2750-2763, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33550701

RESUMEN

c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.


Asunto(s)
Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Susceptibilidad a Enfermedades , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Humanos , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico , Modelos de Riesgos Proporcionales , Sesgo de Publicación
5.
Mikrochim Acta ; 187(7): 383, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533274

RESUMEN

The successful synthesis is reported of Mn, Fe, Co, Ni, Cu-doped g-C3N4 nanoflakes via a simple one-step pyrolysis method, respectively. Among them, the Fe-doped g-C3N4 nanoflakes exhibited the highest peroxidase-like activity, which can be used for colorimetric detection of hydrogen peroxide (H2O2) and sarcosine (SA), within the detection ranges of 2-100 µM and 10-500 µM and detection limits of 1.8 µM and 8.6 µM, respectively. The catalytic mechanism of the Fe-doped g-C3N4 nanoflake was also explored and verified the generation of hydroxyl radical (•OH) through fluorescence method. It is believed that the Fe-doped g-C3N4 nanoflakes as enzyme mimics will greatly promote the practical applications in a variety of fields in the future including biomedical science, environmental governance, antibacterial agent, and bioimaging due to their extraordinary catalytic performance and stability. Graphical abstract.


Asunto(s)
Colorimetría/métodos , Grafito/química , Peróxido de Hidrógeno/análisis , Hierro/química , Nanopartículas/química , Compuestos de Nitrógeno/química , Sarcosina/análisis , Bencidinas/química , Catálisis , Compuestos Cromogénicos/química , Peróxido de Hidrógeno/química , Límite de Detección , Oxidación-Reducción , Sarcosina/química , Sarcosina-Oxidasa/química
6.
BMC Cancer ; 19(1): 997, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651287

RESUMEN

BACKGROUND: High level of reactive oxygen species (ROS) has been detected in almost all cancers, which make it become one of the best-characterized phenotypes in cancers. Though ROS plays an important role in tumors, the degree of oxidative stress can be better evaluated by assessing stable metabolites of oxidative reactions because of its high instability. 8-hydroxy-2'-deoxyguanosine (8-OHdG), a product of oxidative damage to 2'-deoxyguanosine, is known as a useful marker for assessing oxidative DNA damage and has been a feature of carcinogenesis in several researches. But the exact prognostic value of 8-OHdG expression in patients with cancer is still unclear. METHODS: A comprehensive search was performed in PubMed, Web of Science, EMBASE. Eligible studies were included based on defined exclusion and inclusion criteria to perform a meta-analysis. STATA 14.0 was used to estimate pooled hazard ratios (HRs) with 95% confidence interval (95% CI), the heterogeneity among studies and publication bias to judge the prognostic value. RESULTS: A total of 2121 patients from 21 eligible studies were included in the meta-analysis. A significant association was found between elevated 8-OHdG expression and poor OS (overall survival) in cancer patients (pooled HR 1.921, 95% CI: 1.437-2.570); In the subgroup analysis, race of sample, cancer types, detection method of 8-OHdG, sample classification, detection location of 8-OHdG and paper quality (score more or less than 7) did not alter the association between 8-OHdG expression and cancer prognosis. Furthermore, 8-OHdG expression was an independent prognostic marker for overall survival in patients with cancer (pooled HR 2.110, 95% CI: 1.482-3.005) using Cox multivariate analyses. CONCLUSIONS: This meta-analysis found that highly expressed 8-OHdG in tumor tissues may be a predictor of prognosis in most solid tumors. However, especially in breast cancer, low 8-OHdG expression is associated with poor prognosis, which is partly because of the increased antioxidant mechanisms in breast cancer tissues. This study demonstrates for the first time that 8-OHdG expression is associated with the prognosis of cancer patients. In the future, whether the expression level of 8-OHdG can be used as a biomarker for the prognosis of all human cancers requires more research.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Neoplasias/terapia , Biomarcadores de Tumor/metabolismo , Daño del ADN , Supervivencia sin Enfermedad , Humanos , Estrés Oxidativo/genética , Pronóstico , Modelos de Riesgos Proporcionales , Especies Reactivas de Oxígeno
7.
BMC Cancer ; 18(1): 736, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30005626

RESUMEN

BACKGROUND: MLKL is the most important executor of necroptosis pathway. Recent studies have demonstrated that MLKL could serve as a potential prognostic biomarker for cancer patients. However, most studies reported so far are limited in discrete outcome and sample size. METHODS: We systematically searched PubMed, Embase, Web of Science and CNKI to obtain all relevant articles about the prognostic value of abnormally expressed MLKL in patients with any type of tumor. Odds ratios or hazards ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to estimate the association between MLKL expression and clinicopathological characteristics or survival of cancer patients. RESULTS: A total of 6 eligible studies with 613 cancer patients were enrolled in our meta-analysis. Our results demonstrated that decreased expression level of MLKL was significantly associated with poor overall survival (OS) (pooled HR 0.26, 95%CI 0.17-0.40, high/low) and event-free survival (EFS) (pooled HR 0.45, 95%CI 0.23-0.87, high/low) in cancer patients. Furthermore, subgroup analysis divided by type of cancer, sample size, follow-up time and Newcastle-Ottawa Scale (NOS) score showed consistent prognostic value. In addition, our analysis revealed that decreased expression level of MLKL was significantly associated with advanced tumor stage, more lymph node metastasis and older age. CONCLUSIONS: In conclusion, our meta-analysis suggested that decreased MLKL expression might be a convinced unfavorable prognostic factor that could help the clinical decision-making process.


Asunto(s)
Neoplasias/química , Proteínas Quinasas/análisis , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico , Sesgo de Publicación
8.
Anticancer Drugs ; 29(4): 341-352, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29420337

RESUMEN

MTH1 has become a new rising star in the field of 'cancer phenotypic lethality' and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS.


Asunto(s)
Antineoplásicos/farmacología , Crizotinib/farmacología , Enzimas Reparadoras del ADN/biosíntesis , Osteosarcoma/tratamiento farmacológico , Monoéster Fosfórico Hidrolasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Adulto , Anciano , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibición de Migración Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Niño , Crizotinib/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Osteosarcoma/metabolismo , Adulto Joven
9.
BMC Musculoskelet Disord ; 19(1): 381, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30342505

RESUMEN

BACKGROUND: Intervertebral disk degeneration (IDD) is a common musculoskeletal disease associated with genetic factors. COL9A3 gene encodes the α3 (IX) chain of type IX collagen that is part of the interior structure of the disc. Mutations in COL9A3 gene sequence, leading to an Arg103Trp substitution in its 3 chain (the Trp3 allele at rs61734651 site), respectively, have been found to be connected with IDD occurrence in several studies. However, those studies have showed conflict results. Thus, a meta-analysis has been performed to assess the associations between the COL9A3 trp3 polymorphism and IDD. METHODS: Data were gathered from the following four electronic databases: PubMed, Web of Science (WOS), Embase and Cochrane library up to January 01, 2018. The pooled odds ratio (polled ORs) and 95% confidence interval (CI) were calculated to evaluate the strength of relationship between the COL9A3 trp3 polymorphism and IDD. RESULTS: Eleven eligible studies with 1631 cases of IDD and 1366 controls were included in this meta-analysis. The results indicated that the COL9A3 trp3 polymorphism was not associated with IDD (trp3 positive versus trp3 negative: OR = 1.31, 95%CI = 0.78-2.21, P = 0.309). Furthermore, the Egger's test and the Begg funnel plot did not show any evidence of publication bias. CONCLUSIONS: Our results suggest that the COL9A3 trp3 polymorphism might not be associated with IDD. Nor did we find any relationship in subgroup analyses stratified by gender and ethnicity. Future researches with larger samples are required to verify this outcome.


Asunto(s)
Colágeno Tipo IX/genética , Predisposición Genética a la Enfermedad , Degeneración del Disco Intervertebral/genética , Alelos , Humanos , Degeneración del Disco Intervertebral/epidemiología , Mutación , Polimorfismo de Nucleótido Simple
10.
BMC Musculoskelet Disord ; 19(1): 137, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29734947

RESUMEN

BACKGROUND: It was reported that Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) gene polymorphism might be related to the risk of musculoskeletal degenerative diseases (MSDD), such as osteoarthritis (OA), intervertebral disc degeneration (IVDD) and rheumatoid arthritis (RA). However, data from different studies was inconsistent. Here we aim to elaborately summarize and explore the association between the Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) and MSDD. METHODS: Literatures were selected from PubMed, Web of Science, Embase, Scopus and Medline in English and VIP, SinoMed, Wanfang and the China National Knowledge Infrastructure (CNKI) in Chinese up to August 21, 2017. All the researches included are case-control studies about human. We calculated the pooled odds ratios (ORs) with 95% confidence intervals (95% CI) to evaluate the strengths of the associations of Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) polymorphisms with MSDD risk. RESULTS: Eleven eligible studies for rs1800682 with 1930 cases and 1720 controls, 6 eligible studies for rs2234767 with 1794 cases and 1909 controls, 3 eligible studies for rs5030772 with 367 cases and 313 controls and 8 eligible studies for rs763110 with 2010 cases and 2105 controls were included in this analysis. The results showed that the G allele of Fas (rs1800682) is associated with an increased risk of IVDD in homozygote and recessive models. The G allele of Fas (rs2234767) is linked to a decreased risk of RA but an enhanced risk of OA in allele and recessive models. In addition, the T allele of FasL (rs763110) is correlated with a reduced risk of IVDD in all of models. However, no relationship was found between FasL (rs5030772) and these three types of MSDD in any models. CONCLUSIONS: Fas (rs1800682) and FasL (rs763110) polymorphism were associated with the risk of IVDD and Fas (rs2234767) was correlated to the susceptibility of OA and RA. Fas (rs1800682) and Fas (rs2234767) are more likely to be associated with MSDD for Chinese people. FasL (rs763110) is related to the progression of MSDD for both Caucasoid and Chinese race groups. But FasL (rs5030772) might not be associated with any types of MSDD or any race groups statistically.


Asunto(s)
Proteína Ligando Fas/genética , Estudios de Asociación Genética/métodos , Enfermedades Musculoesqueléticas/genética , Polimorfismo de Nucleótido Simple/genética , Receptor fas/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Humanos , Enfermedades Musculoesqueléticas/diagnóstico , Enfermedades Musculoesqueléticas/epidemiología , Población Blanca/genética
11.
Cell Death Discov ; 10(1): 177, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627379

RESUMEN

Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.

13.
Exp Mol Med ; 54(3): 309-323, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35338257

RESUMEN

Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD.


Asunto(s)
Núcleo Pulposo , Sirtuina 3 , Apoptosis , Proteínas HSP70 de Choque Térmico/genética , Dinámicas Mitocondriales , Núcleo Pulposo/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
14.
Int J Oncol ; 60(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244192

RESUMEN

Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2­bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2­lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript­1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element­binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Osteosarcoma/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/genética , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Humanos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Osteosarcoma/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Hormonas Tiroideas/genética , Efecto Warburg en Oncología/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide
15.
Mol Oncol ; 16(11): 2174-2194, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34894177

RESUMEN

Osteosarcoma (OS) is the most common primary malignancy of bone. Epigenetic regulation plays a pivotal role in cancer development in various aspects, including immune response. In this study, we studied the potential association of alterations in the DNA methylation and transcription of immune-related genes with changes in the tumor microenvironment (TME) and tumor prognosis of OS. We obtained multi-omics data for OS patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. By referring to curated immune signatures and using a consensus clustering method, we categorized patients based on immune-related DNA methylation patterns (IMPs), and evaluated prognosis and TME characteristics of the resulting patient subgroups. Subsequently, we used a machine-learning approach to construct an IMP-associated prognostic risk model incorporating the expression of a six-gene signature (MYC, COL13A1, UHRF2, MT1A, ACTB, and GBP1), which was then validated in an independent patient cohort. Furthermore, we evaluated TME patterns, transcriptional variation in biological pathways, somatic copy number alteration, anticancer drug sensitivity, and potential responsiveness to immune checkpoint inhibitor therapy with regard to our IMP-associated signature scoring model. By integrative IMP and transcriptomic analysis, we uncovered distinct prognosis and TME patterns in OS. Finally, we constructed a classifying model, which may aid in prognosis prediction and provide a potential rationale for targeted- and immune checkpoint inhibitor therapy in OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Bases de Datos Genéticas , Epigénesis Genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Osteosarcoma/genética , Osteosarcoma/inmunología , Transcriptoma/genética , Microambiente Tumoral/genética
16.
Genes Dis ; 9(2): 347-357, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35224151

RESUMEN

The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.

17.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820586

RESUMEN

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

18.
Front Immunol ; 12: 732006, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745101

RESUMEN

Background: The International Prognostic Index (IPI) is widely used to discriminate the prognosis of patients with diffuse large B-cell lymphoma (DLBCL). However, there is a significant need to identify novel valuable biomarkers in the context of targeted therapy, such as immune checkpoint blockade (ICB). Methods: Gene expression data and clinical DLBCL information were obtained from The Cancer Genome Atlas and Gene Expression Omnibus datasets. A total of 371 immune-related genes in DLBCL patients associated with different IPI risk groups were identified by weighted gene co-expression network analysis, and eight genes were selected to construct an IPI-based immune prognostic model (IPI-IPM). Subsequently, we analyzed the somatic mutation and transcription profiles of the IPI-IPM subgroups as well as the potential clinical response to immune checkpoint blockade (ICB) in IPI-IPM subgroups. Results: The IPI-IPM was constructed based on the expression of CMBL, TLCD3B, SYNDIG1, ESM1, EPHA3, HUNK, PTX3, and IL12A, where high-risk patients had worse overall survival than low-risk patients, consistent with the results in the independent validation cohorts. The comprehensive results showed that high IPI-IPM risk scores were correlated with immune-related signaling pathways, high KMT2D and CD79B mutation rates, and upregulation of inhibitory immune checkpoints, including PD-L1, BTLA, and SIGLEC7, indicating a greater potential response to ICB therapy. Conclusion: The IPI-IPM has independent prognostic significance for DLBCL patients, which provides an immunological perspective to elucidate the mechanisms of tumor progression and sheds light on the development of immunotherapy for DLBCL.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Linfoma de Células B Grandes Difuso/inmunología , Nomogramas , Transcriptoma , Microambiente Tumoral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Bases de Datos Genéticas , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento , Microambiente Tumoral/genética , Adulto Joven
19.
Front Cell Dev Biol ; 9: 652300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277600

RESUMEN

Due to the rarity and heterogeneity, it is challenging to explore and develop new therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the tumor microenvironment (TME) was widely studied, which provided a novel potential approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory network has been reported as a critical molecular mechanism of tumor development. However, the role of the ceRNA regulatory network in the TME of sarcoma remains unclear. In this study, gene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs, and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-5p, presenting a promising performance in predicting the prognosis of patients with sarcoma.

20.
Front Oncol ; 11: 764938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059310

RESUMEN

BACKGROUND: Sacroiliac joint tumor is rare, and the reconstruction after tumor resection is difficult. We aimed to analyze and compare the clinical effects of three-dimensional (3D) printed prostheses and bone cement combined with screws for bone defect reconstruction after sacroiliac joint tumor resection. METHODS: Twelve patients with sacroiliac joint tumors who underwent tumor resection and received 3D-printed prostheses to reconstruct bone defects in our hospital from January 2014 to December 2020 were included in the study group Twelve matched patients who underwent sacroiliac joint tumor resection and reconstruction with bone cement and screws in the same time period were selected as the control group. RESULTS: In the 3D-printing group, six cases were extensively excised, and six cases were marginally excised. All patients were followed up for 6-90 months, and the median follow-up time was 21 months. Among them, nine patients had disease-free survival, two survived with tumor recurrence, and one died due to tumor metastasis. The MSTS-93 score of the surviving patients was 24.1 ± 2.8. The operation time was 120.30 ± 14.50 min, and the intraoperative bleeding was 625.50 ± 30.00 ml. In the control group, seven cases were extensively excised, and five cases were marginally excised. All patients were followed up for 6-90 months, with a median follow-up time of 20 months. Among them, nine patients had disease-free survival, one survived with tumor recurrence, and two died due to tumor metastasis. The MSTS-93 score of the patients was 18.9 ± 2.6. The operation time was 165.25 ± 15.00 min, and the intraoperative bleeding was 635.45 ± 32.00 ml. There was no significant difference in survival status, intraoperative blood loss, or complications between the two groups (P>0.05). However, there were statistically significant differences in operative time and postoperative MSTS-93 scores between the two groups (P<0.05). CONCLUSIONS: After resection of the sacroiliac joint tumor, reconstruction using 3D printed prostheses was shorter and resulted in better movement function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA