Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(3): e0198223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411106

RESUMEN

Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Animales , Niño , Humanos , Diarrea , Haití , Interleucina-11/metabolismo , Proteínas NLR/metabolismo , Nucleótidos/metabolismo , Fosforilación , Transducción de Señal , Porcinos , Zoonosis/metabolismo
2.
PLoS Pathog ; 19(10): e1011702, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801439

RESUMEN

Coronaviruses (CoVs) are a family of the largest RNA viruses that typically cause respiratory, enteric, and hepatic diseases in animals and humans, imposing great threats to the public safety and animal health. Porcine deltacoronavirus (PDCoV), a newly emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets all over the world and poses potential risks of cross-species transmission. Here, we use PDCoV as a model of CoVs to illustrate the reciprocal regulation between CoVs infection and host antiviral responses. In this study, downregulation of DNA polymerase delta interacting protein 3 (POLDIP3) was confirmed in PDCoV infected IPEC-J2 cells by isobaric tags for relative and absolute quantification (iTRAQ) and Western blotting analysis. Overexpression of POLDIP3 inhibits PDCoV infection, whereas POLDIP3 knockout (POLDIP3-/-) by CRISPR-Cas9 editing significantly promotes PDCoV infection, indicating POLDIP3 as a novel antiviral regulator against PDCoV infection. Surprisingly, an antagonistic strategy was revealed that PDCoV encoded nonstructural protein 5 (nsp5) was responsible for POLDIP3 reduction via its 3C-like protease cleavage of POLDIP3 at the glutamine acid 176 (Q176), facilitating PDCoV infection due to the loss of antiviral effects of the cleaved fragments. Consistent with the obtained data in IPEC-J2 cell model in vitro, POLDIP3 reduction by cleavage was also corroborated in PDCoV infected-SPF piglets in vivo. Collectively, we unveiled a new antagonistic strategy evolved by PDCoV to counteract antiviral innate immunity by nsp5-mediated POLDIP3 cleavage, eventually ensuring productive virus replication. Importantly, we further demonstrated that nsp5s from PEDV and TGEV harbor the conserved function to cleave porcine POLDIP3 at the Q176 to despair POLDIP3-mediated antiviral effects. In addition, nsp5 from SARS-CoV-2 also cleaves human POLDIP3. Therefore, we speculate that coronaviruses employ similar POLDIP3 cleavage mechanisms mediated by nsp5 to antagonize the host antiviral responses to sustain efficient virus infection.


Asunto(s)
Infecciones por Coronavirus , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Inmunidad Innata , Replicación Viral , Antivirales , Proteínas de Unión al ARN
3.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36888569

RESUMEN

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Papaína , Papaína/metabolismo , Beclina-1 , Péptido Hidrolasas/metabolismo , Autofagia , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Virol ; 97(6): e0058923, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255428

RESUMEN

The inflammasome pathway is a critical early response mechanism of the host that detects pathogens, initiates the production of inflammatory cytokines, and recruits effector cells to the infection site. Nonetheless, the mechanism of inflammasome activation in coronavirus infection and its biological functions in host defense remain unclear. Transmissible gastroenteritis virus (TGEV), a member of the genus Alphacoronavirus, is a significant pathogen that mainly infects piglets and causes intestinal inflammation and inflammatory cell infiltration. Here, we investigated the mechanism of inflammasome activation in intestinal epithelial cells (IECs) infected with TGEV. We observed a substantial increase in interleukin 1ß (IL-1ß) and IL-18 levels in both IECs and TGEV-infected porcine intestinal tissues. Furthermore, TGEV infection resulted in increased activation of caspase-1 and the NLRP1 (NOD-like receptor [NLR]-containing pyrin domain [PYD]) inflammasome. Our findings revealed that TGEV infection impeded the interaction between porcine NLRP1 (pNLRP1) and porcine dipeptidyl peptidases 9 (pDPP9), yet it did not reduce the expression of pDPP9. Importantly, the ZU5 domain, not the function-to-find domain (FIIND) reported in human NLRP1, was identified as the minimal domain of pNLRP1 for pDPP9 binding. In addition, the robust type I IFN expression induced by TGEV infection also upregulated pNLRP1 expression and pNLRP1 itself acts as an interferon-stimulated gene to counteract TGEV infection. Our data demonstrate that pNLRP1 has antiviral capabilities against coronavirus infection, which highlights its potential as a novel therapeutic target for coronavirus antiviral therapy. IMPORTANCE Coronavirus primarily targets the epithelial cells of the respiratory and gastrointestinal tracts, leading to damage in both humans and animals. NLRP1 is a direct sensor for RNA virus infection which is highly expressed in epithelial barrier tissues. However, until recently, the precise molecular mechanisms underlying its activation in coronavirus infection and subsequent downstream events remained unclear. In this study, we demonstrate that the alphacoronavirus TGEV induces the production of IL-1ß and IL-18 and upregulates the expression of pNLRP1. Furthermore, we found that pNLRP1 can serve as an interferon-stimulated gene (ISG) to inhibit the infection of enterovirus TGEV. Our research highlights the crucial role of NLRP1 as a regulator of innate immunity in TGEV infection and shows that it may serve as a potential therapeutic target for the treatment of coronavirus infection.


Asunto(s)
Gastroenteritis Porcina Transmisible , Inflamasomas , Proteínas NLR , Virus de la Gastroenteritis Transmisible , Animales , Inflamasomas/inmunología , Interferón Tipo I , Interleucina-18 , Proteínas NLR/inmunología , Porcinos , Gastroenteritis Porcina Transmisible/inmunología , Gastroenteritis Porcina Transmisible/transmisión
5.
J Virol ; 97(4): e0012823, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975782

RESUMEN

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Asunto(s)
Clatrina , Proteínas M de Coronavirus , Endocitosis , Proteínas del Choque Térmico HSC70 , Virus de la Gastroenteritis Transmisible , Internalización del Virus , Virus de la Gastroenteritis Transmisible/fisiología , Clatrina/metabolismo , Proteínas M de Coronavirus/metabolismo , Línea Celular , Humanos , Animales , Replicación Viral
6.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35945157

RESUMEN

RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.


Asunto(s)
Redes Neurales de la Computación , ARN , 5-Metilcitosina/análogos & derivados , Aprendizaje Automático , Nucleótidos , ARN/genética
7.
Vet Res ; 55(1): 44, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589930

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Asunto(s)
Alphacoronavirus , Proteínas de la Nucleocápside , Animales , Porcinos , Alphacoronavirus/metabolismo , Interferones/genética , Proteína 58 DEAD Box/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38644543

RESUMEN

OBJECTIVES: We aimed to establish a diagnostic model of endometriosis (EM) based on disulfidptosis-related genes (DRGs). MATERIALS AND METHODS: The mRNA expression data of EM were downloaded from the gene expression omnibus database and subjected to differential analysis, and co-expression analysis was performed based on 10 disulfidptosis genes to acquire DRGs. The differentially expressed DRGs were subjected to biofunctional analysis. Lasso analysis and support vector machine-recursive feature elimination (SVM-RFE) analysis were employed to extract the intersection of feature genes as biomarkers, and the diagnostic values of biomarkers for EM were evaluated based on receiver operating characteristic curves. The correlations between biomarkers and the immune microenvironment were assessed by Pearson analysis of biomarkers and immune cell infiltration levels. RESULTS: Transforming growth factor ß stimulated protein clone 22 domain family member 4 (TSC22D4), and F-box/SPRY domain-containing protein 1 (FBXO45) worked as the diagnostic classifiers in EM, with an obvious decrease in FBXO45 expression and an evident increase in TSC22D4 expression. The areas under the curves of FBXO45 and TSC22D4 were 0.752 and 0.706, respectively, and the area of FBXO45 combined with TSC22D4 reached 0.865, suggesting that TSC22D4 and FBXO45 had high predictive values. The diagnostic markers were closely correlated with immune cell infiltration. CONCLUSION: The diagnostic markers constructed based on disulfidptosis are good predictors for EM, which have close correlations with EM.

9.
Women Health ; 64(2): 109-120, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38148599

RESUMEN

Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.


Asunto(s)
Endometriosis , MicroARNs , Femenino , Humanos , Movimiento Celular/genética , Estrógenos , MicroARNs/genética , MicroARNs/metabolismo , Células del Estroma/metabolismo
10.
BMC Oral Health ; 24(1): 459, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627729

RESUMEN

BACKGROUND: Dental caries in young children is a difficult global oral health problem. In the last decade, China has put a great deal of effort into reducing the prevalence of dental caries. This study, which is part of the China Population Chronic Disease and Nutrition Surveillance 2021, aimed to investigate the prevalence of dental caries among children aged 5 in Shanghai, China, and its associated factors. METHODS: A total of 1281 children aged 5 years from 6 districts in Shanghai were selected by a stratified sampling method. The survey consisted of an oral health questionnaire and an oral health examination. The questionnaire included questions on oral health knowledge, attitudes, and behaviours. The oral health examination used WHO standards. After screening, the data were input and analysed. Chi-square tests and logistic regression analyses were used to study the relevant factors affecting dental caries. RESULTS: The prevalence of dental caries among 1281 children was 51.0%, the dmft index score was 2.46, the Significant Caries Index (SiC) score was 6.39, and the SiC10 score was 10.35. Dental caries experience was related to the frequency of sweet drink consumption, the age of starting tooth brushing, eating habits after brushing, whether the children had received an oral examination provided by the government (p < 0.05), and the mother's education level but was not related to sex, the use of fluoride toothpaste, the frequency of brushing, whether the parents assisted brushing, or the frequency of flossing (p > 0.05). Logistic regression analysis showed that the region of residence, eating after brushing and the age of starting brushing were associated with dental caries. CONCLUSIONS: Dental caries remained prevalent among 5-year-old children in Shanghai, China. Prevention strategies that target the associated factors including region of residence, eating after brushing, and the age of starting brushing should be considered.


Asunto(s)
Caries Dental , Humanos , Preescolar , Caries Dental/epidemiología , Caries Dental/prevención & control , China/epidemiología , Índice CPO , Estudios Transversales , Salud Bucal , Prevalencia
11.
J Virol ; 96(24): e0138822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448799

RESUMEN

Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.


Asunto(s)
Gastroenteritis Porcina Transmisible , Interferón lambda , Virus de la Gastroenteritis Transmisible , Animales , Antivirales , Interferón lambda/inmunología , Interferón lambda/farmacología , FN-kappa B/inmunología , Porcinos , Virus de la Gastroenteritis Transmisible/fisiología , Gastroenteritis Porcina Transmisible/inmunología
12.
J Virol ; 96(1): e0148121, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643426

RESUMEN

Porcine parvovirus (PPV) NS1, the major nonstructural protein of this virus, plays an important role in PPV replication. We show, for the first time, that NS1 dynamically shuttles between the nucleus and cytoplasm, although its subcellular localization is predominantly nuclear. NS1 contains two nuclear export signals (NESs) at amino acids 283 to 291 (designated NES2) and amino acids 602 to 608 (designated NES1). NES1 and NES2 are both functional and transferable NESs, and their nuclear export activity is blocked by leptomycin B (LMB), suggesting that the export of NS1 from the nucleus is dependent upon the chromosome region maintenance 1 (CRM1) pathway. Deletion and site-directed mutational analyses showed that NS1 contains a bipartite nuclear localization signal (NLS) at amino acids 256 to 274. Coimmunoprecipitation assays showed that NS1 interacts with importins α5 and α7 through its NLS. The overexpression of CRM1 and importins α5 and α7 significantly promoted PPV replication, whereas the inhibition of CRM1- and importin α/ß-mediated transport by specific inhibitors (LMB, importazole, and ivermectin) clearly blocked PPV replication. The mutant viruses with deletions of the NESs or NLS motif of NS1 by using reverse genetics could not be rescued, suggesting that the NESs and NLS are essential for PPV replication. Collectively, these findings suggest that NS1 shuttles between the nucleus and cytoplasm, mediated by its functional NESs and NLS, via the CRM1-dependent nuclear export pathway and the importin α/ß-mediated nuclear import pathway, and PPV proliferation was inhibited by blocking NS1 nuclear import or export. IMPORTANCE PPV replicates in the nucleus, and the nuclear envelope is a barrier to its entry into and egress from the nucleus. PPV NS1 is a nucleus-targeting protein that is important for viral DNA replication. Because the NS1 molecule is large (>50 kDa), it cannot pass through the nuclear pore complex by diffusion alone and requires specific transport receptors to permit its nucleocytoplasmic shuttling. In this study, the two functional NESs in the NS1 protein were identified, and their dependence on the CRM1 pathway for nuclear export was demonstrated. The nuclear import of NS1 utilizes importins α5 and α7 in the importin α/ß nuclear import pathway.


Asunto(s)
Interacciones Huésped-Patógeno , Carioferinas/metabolismo , Infecciones por Parvoviridae/veterinaria , Parvovirus Porcino/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Carioferinas/genética , Ratones , Señales de Exportación Nuclear/genética , Unión Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Porcinos , Proteínas no Estructurales Virales/genética , Replicación Viral , Proteína Exportina 1
13.
J Virol ; 96(5): e0088921, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34495699

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. Different antagonistic strategies have been identified, and the mechanism by which PEDV infection impairs the production of interferon (IFN) and delays the activation of the IFN response to escape host innate immunity has been determined, but the pathogenic mechanisms of PEDV infection remain enigmatic. Our preliminary results revealed that endogenous F-box and WD repeat domain-containing 7 (FBXW7) protein, the substrate recognition component of the SCF-type E3 ubiquitin ligase, is downregulated in PEDV-infected Vero E6 cells, according to the results from an isobaric tags for relative and absolute quantification (iTRAQ) analysis. Overexpression of FBXW7 in target cells makes them more resistant to PEDV infection, whereas ablation of FBXW7 expression by small interfering RNA (siRNA) significantly promotes PEDV infection. In addition, FBXW7 was verified as an innate antiviral factor capable of enhancing the expression of RIG-I and TBK1, and it was found to induce interferon-stimulated genes (ISGs), which led to an elevated antiviral state of the host cells. Moreover, we revealed that PEDV nonstructural protein 2 (nsp2) interacts with FBXW7 and targets FBXW7 for degradation through the K48-linked ubiquitin-proteasome pathway. Consistent with the results proven in vitro, FBXW7 reduction was also confirmed in different intestinal tissues from PEDV-infected specific-pathogen-free (SPF) pigs. Taken together, the data indicated that PEDV has evolved with a distinct antagonistic strategy to circumvent the host antiviral response by targeting the ubiquitin-proteasome-mediated degradation of FBXW7. Our findings provide novel insights into PEDV infection and pathogenesis. IMPORTANCE To counteract the host antiviral defenses, most viruses, including coronaviruses, have evolved with diverse strategies to dampen host IFN-mediated antiviral response, by interfering with or evading specific host regulators at multiple steps of this response. In this study, a novel antagonistic strategy was revealed showing that PEDV infection could circumvent the host innate response by targeted degradation of endogenous FBXW7 in target cells, a process that was verified to be a positive modulator for the host innate immune system. Degradation of FBXW7 hampers host innate antiviral activation and facilitates PEDV replication. Our findings reveal a new mechanism exploited by PEDV to suppress the host antiviral response.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Evasión Inmune , Inmunidad Innata , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/inmunología , Animales , Antivirales/inmunología , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Interferón Tipo I/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/inmunología , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Ubiquitinas/metabolismo , Células Vero
14.
Bioinformatics ; 38(18): 4271-4277, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35866985

RESUMEN

MOTIVATION: 5-Methylcytosine (m5C) is a crucial post-transcriptional modification. With the development of technology, it is widely found in various RNAs. Numerous studies have indicated that m5C plays an essential role in various activities of organisms, such as tRNA recognition, stabilization of RNA structure, RNA metabolism and so on. Traditional identification is costly and time-consuming by wet biological experiments. Therefore, computational models are commonly used to identify the m5C sites. Due to the vast computing advantages of deep learning, it is feasible to construct the predictive model through deep learning algorithms. RESULTS: In this study, we construct a model to identify m5C based on a deep fusion approach with an improved residual network. First, sequence features are extracted from the RNA sequences using Kmer, K-tuple nucleotide frequency component (KNFC), Pseudo dinucleotide composition (PseDNC) and Physical and chemical property (PCP). Kmer and KNFC extract information from a statistical point of view. PseDNC and PCP extract information from the physicochemical properties of RNA sequences. Then, two parts of information are fused with new features using bidirectional long- and short-term memory and attention mechanisms, respectively. Immediately after, the fused features are fed into the improved residual network for classification. Finally, 10-fold cross-validation and independent set testing are used to verify the credibility of the model. The results show that the accuracy reaches 91.87%, 95.55%, 92.27% and 95.60% on the training sets and independent test sets of Arabidopsis thaliana and M.musculus, respectively. This is a considerable improvement compared to previous studies and demonstrates the robust performance of our model. AVAILABILITY AND IMPLEMENTATION: The data and code related to the study are available at https://github.com/alivelxj/m5c-DFRESG.


Asunto(s)
5-Metilcitosina , ARN , ARN/química , 5-Metilcitosina/química , Nucleótidos/química , Algoritmos , Secuencia de Bases
15.
BMC Microbiol ; 23(1): 19, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658486

RESUMEN

A. Baumannii is an opportunistic nosocomial pathogen which has severe antibiotic resistance. However, the epidemiology is less clearly understood in Jilin province and China. Thus, 89 A. baumannii isolates from a single hospital in Jilin province between 2013-2017 were performed by MLST. In order to better understanding of the epidemiology of Jilin isolates, Chinese strains originated from other domestic regions and worldwide isolates in MLST database were analyzed by silico phylogenetic tools together. A total of 22 STs in Jilin were identified, and 10 STs were found to be novel. The top three predominant sequence types are ST195 (n = 34, 38.2%), ST208 (n = 14, 15.7%) and ST540 (n = 13, 14.6%). ST369 is predicted to be group founder and ST195, ST540 are subgroup founders of the majority STs in Jilin Province. Some newly discovered singletons showed close relationship with strains from other countries, which suggest that nation-cross transmission is one of important origin of Jilin strains. The majority of Jilin STs showed clonality and close relationship with the majorities from other regions of China. But occupation of individual STs in Jilin were different from that of other domestic regions. The aggregation trend and genetic relationship proved that predominant Jilin STs continue to mutate during transmission. Drug resistance facilitated transmission of Jilin A.baumannii isolates because more than 94% of isolates are resistant to at least one carbapenem and the STs with strong resistance to carbapenems usually has more isolates. In conclusion, high diversity and different occupation of STs, and occupation of novel STs proved that epidemiology of A. baumannii in Jilin has special regional characteristics, and drug resistance facilitated transmission of domestic strains and foreign strains.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , Tipificación de Secuencias Multilocus , Filogenia , Epidemiología Molecular , Carbapenémicos/farmacología , China/epidemiología , Pruebas de Sensibilidad Microbiana
16.
Opt Express ; 31(26): 44177-44189, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178495

RESUMEN

Plasmonic tweezers break the diffraction limit and enable trap the deep-subwavelength particles. However, the innate scattering properties and the photothermal effect of metal nanoparticles pose challenges to their effective trapping and the non-damaging trapping of biomolecules. In this study, we investigate the enhanced trapping properties induced by strong coupling between localized surface plasmon resonances (LSPR) and excitons in plasmonic tweezers. The LSPR-exciton strong coupling exhibits an anticrossing behavior in dispersion curves with a markable Rabi splitting of 196 meV. Plasmonic trapping forces on excitons experience a significant increase within this strong coupling system due to higher longitudinal enhancement of electric field enhancement, which enables efficient particle trapping using lower laser power and minimizes ohmic heat generation. Moreover, leveraging strong coupling effects allows the successful trapping of a 50 nm Au particle coated with J-aggregates, overcoming previous limitations associated with scattering characteristics and smaller size that hindered effective metal nanoparticle manipulation. These findings open up new possibilities for the nondestructive trapping of biomolecules and metal nanoparticles across various applications.

17.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762268

RESUMEN

Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants.


Asunto(s)
Proteínas de Plantas , Estrés Salino , Solanaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Salino/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanaceae/genética , Solanaceae/fisiología
18.
J Virol ; 95(21): e0124621, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379449

RESUMEN

Rotaviruses are the causative agents of severe and dehydrating gastroenteritis in children, piglets, and many other young animals. They replicate their genomes and assemble double-layered particles in cytoplasmic electron-dense inclusion bodies called "viroplasms." The formation of viroplasms is reportedly associated with the stability of microtubules. Although material transport is an important function of microtubules, whether and how microtubule-based transport influences the formation of viroplasms are still unclear. Here, we demonstrate that small viroplasms move and fuse in living cells. We show that microtubule-based dynein transport affects rotavirus infection, viroplasm formation, and the assembly of transient enveloped particles (TEPs) and triple-layered particles (TLPs). The dynein intermediate chain (DIC) is shown to localize in the viroplasm and to interact directly with nonstructural protein 2 (NSP2), indicating that the DIC is responsible for connecting the viroplasm to dynein. The WD40 repeat domain of the DIC regulates the interaction between the DIC and NSP2, and the knockdown of the DIC inhibited rotaviral infection, viroplasm formation, and the assembly of TEPs and TLPs. Our findings show that rotavirus viroplasms hijack dynein transport for fusion events, required for maximal assembly of infectious viral progeny. This study provides novel insights into the intracellular transport of viroplasms, which is involved in their biogenesis. IMPORTANCE Because the viroplasm is the viral factory for rotavirus replication, viroplasm formation undoubtedly determines the effective production of progeny rotavirus. Therefore, an understanding of the virus-host interactions involved in the biogenesis of the viroplasm is critical for the future development of prophylactic and therapeutic strategies. Previous studies have reported that the formation of viroplasms is associated with the stability of microtubules, whereas little is known about its specific mechanism. Here, we demonstrate that rotavirus viroplasm formation takes advantage of microtubule-based dynein transport mediated by an interaction between NSP2 and the DIC. These findings provide new insight into the intracellular transport of viroplasms.


Asunto(s)
Dineínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Infecciones por Rotavirus/virología , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Compartimentos de Replicación Viral/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Microtúbulos/metabolismo , Dominios Proteicos , Transporte de Proteínas , Porcinos , Imagen de Lapso de Tiempo , Ensamble de Virus , Replicación Viral
19.
Opt Lett ; 47(15): 3928-3931, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913350

RESUMEN

We reveal the self-accelerating performance of an Airy beam under space-variable spectrum modulation, which corresponds to the extension of the field of view (FOV) and imaging depth in Airy-beam tomographic microscopy (ATM), resulting in the decline of fidelity and resolution of a reconstructed image with an increased FOV and depth of field (DOF). A strategy of spectrum modulation is proposed, and high-fidelity, high-resolution 3D imaging is realized in a 150 µm × 50 µm × 12 µm volume. This study offers a paradigm to improve the quality of reconstructed 3D images based on spectrum modulation for other light fields.

20.
Support Care Cancer ; 30(6): 5007-5015, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35192056

RESUMEN

PURPOSE: This study aims to explore the association between mindfulness and social engagement among Chinese breast cancer survivors (BCSs) and the mediator role of stigma in the relation of mindfulness and social engagement. METHODS: This cross-sectional study was conducted among 937 BCSs from March to April 2021 in Shanghai, China. Data were collected using the Mindful Attention Awareness Scale, the Stigma Scale for Chronic Illness 8-item version, and the index of social engagement. Descriptive statistics, independent-sample t-test, one-way ANOVA, and regression analyses were used to explore the role of stigma in the association of mindfulness and social engagement among Chinese BCSs. RESULTS: Social engagement levels differed significantly by participant's BMI, education level, employment status, personal monthly income, monthly per capita household income. Mindfulness was positively correlated with social engagement, and stigma was negatively correlated with mindfulness and social engagement among Chinese BCSs. Stigma plays a complete mediating role in the relationship between mindfulness and social engagement in BCSs. CONCLUSION: In the practice of individual mindfulness intervention on social engagement of BCSs, health care providers should identify and eliminate the constraints, which restrain the reduction of stigma level while individual mindfulness is being enhanced.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Atención Plena , China , Estudios Transversales , Femenino , Humanos , Participación Social , Estigma Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA