Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.928
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931246

RESUMEN

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Fototransducción , Mutación
2.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051369

RESUMEN

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Asunto(s)
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animales , Ácidos y Sales Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran , Farmacorresistencia Microbiana/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Técnicas de Transferencia de Gen , Vida Libre de Gérmenes , Inflamación/patología , Intestinos/patología , Masculino , Metaboloma/genética , Metagenómica , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional/genética , Mutación/genética , ARN Ribosómico 16S/genética , Transcripción Genética
3.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866066

RESUMEN

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Animales , Línea Celular , Células HEK293 , Corazón/fisiología , Humanos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Sodio/metabolismo , Canales de Sodio/química , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/ultraestructura
4.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795413

RESUMEN

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Asunto(s)
ARN Mensajero/genética , ARN Viral/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Nanopartículas/química , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células TH1/inmunología , Potencia de la Vacuna , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Células Vero , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
5.
Cell ; 179(7): 1566-1581.e16, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835033

RESUMEN

Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.


Asunto(s)
Proteínas Argonautas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Interferente Pequeño/metabolismo , Espermatogénesis , Regiones no Traducidas 3' , Animales , Proteínas Argonautas/genética , Emparejamiento Base , Células Cultivadas , Proteína 1 Similar a ELAV/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética
6.
Cell ; 173(4): 989-1002.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29606351

RESUMEN

Huntington's disease (HD) is characterized by preferential loss of the medium spiny neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology, we established a knockin (KI) pig model of HD that endogenously expresses full-length mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained F1 and F2 generation KI pigs. Characterization of founder and F1 KI pigs shows consistent movement, behavioral abnormalities, and early death, which are germline transmittable. More importantly, brains of HD KI pig display striking and selective degeneration of striatal medium spiny neurons. Thus, using a large animal model of HD, we demonstrate for the first time that overt and selective neurodegeneration seen in HD patients can be recapitulated by endogenously expressed mutant proteins in large mammals, a finding that also underscores the importance of using large mammals to investigate the pathogenesis of neurodegenerative diseases and their therapeutics.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/patología , Animales , Peso Corporal , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Sistemas CRISPR-Cas/genética , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Cuerpo Estriado/patología , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/mortalidad , Imagen por Resonancia Magnética , Neuronas/metabolismo , Neuronas/patología , Técnicas de Transferencia Nuclear , Tasa de Supervivencia , Porcinos , Repeticiones de Trinucleótidos
7.
Cell ; 169(6): 1090-1104.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552346

RESUMEN

Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Azoospermia/genética , Mutación , Animales , Azoospermia/metabolismo , Cromatina/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Histonas/metabolismo , Humanos , Intrones , Masculino , Ratones , Linaje , Protaminas/metabolismo , Proteolisis , Espermatogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación
9.
Mol Cell ; 82(16): 3015-3029.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35728588

RESUMEN

Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Transducción de Señal , Temperatura
10.
Immunity ; 51(5): 930-948.e6, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31604687

RESUMEN

Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.


Asunto(s)
Diferenciación Celular/genética , Linfopoyesis/genética , Organogénesis/genética , Células Precursoras de Linfocitos T/citología , Células Precursoras de Linfocitos T/metabolismo , Timo/embriología , Biomarcadores , Diferenciación Celular/inmunología , Embrión de Mamíferos , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Linfopoyesis/inmunología , Detección de Señal Psicológica , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timo/inmunología , Timo/metabolismo , Transcriptoma
11.
Mol Cell ; 78(1): 31-41.e5, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32126207

RESUMEN

Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state. A cryoelectron microscopy (cryo-EM) structure of the IRP2-FBXL5-SKP1 complex reveals that the cluster organizes the FBXL5 C-terminal loop responsible for recruiting IRP2. Interestingly, IRP2 binding to FBXL5 hinges on the oxidized state of the [2Fe2S] cluster maintained by ambient oxygen, which could explain hypoxia-induced IRP2 stabilization. Steric incompatibility also allows FBXL5 to physically dislodge IRP2 from iron-responsive element RNA to facilitate its turnover. Taken together, our studies have identified an iron-sulfur cluster within FBXL5, which promotes IRP2 polyubiquitination and degradation in response to both iron and oxygen concentrations.


Asunto(s)
Proteínas F-Box/química , Proteína 2 Reguladora de Hierro/química , Oxígeno/química , Complejos de Ubiquitina-Proteína Ligasa/química , Línea Celular , Proteínas F-Box/metabolismo , Homeostasis , Humanos , Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Proteínas Quinasas Asociadas a Fase-S/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
12.
Mol Cell ; 77(5): 999-1013.e6, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32017896

RESUMEN

U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.


Asunto(s)
Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Empalmosomas/metabolismo , Animales , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Precursores del ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Transducción de Señal , Espermatogénesis/genética , Empalmosomas/genética
13.
Mol Cell ; 76(5): 712-723.e4, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31733991

RESUMEN

The COMPASS (complex of proteins associated with Set1) complex represents the prototype of the SET1/MLL family of methyltransferases that controls gene transcription by H3K4 methylation (H3K4me). Although H2B monoubiquitination (H2Bub) is well known as a prerequisite histone mark for COMPASS activity, how H2Bub activates COMPASS remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of an extended COMPASS catalytic module (CM) bound to the H2Bub and free nucleosome. The COMPASS CM clamps onto the nucleosome disk-face via an extensive interface to capture the flexible H3 N-terminal tail. The interface also sandwiches a critical Set1 arginine-rich motif (ARM) that autoinhibits COMPASS. Unexpectedly, without enhancing COMPASS-nucleosome interaction, H2Bub activates the enzymatic assembly by packing against Swd1 and alleviating the inhibitory effect of the Set1 ARM upon fastening it to the acidic patch. By delineating the spatial configuration of the COMPASS-H2Bub-nucleosome assembly, our studies establish the structural framework for understanding the long-studied H2Bub-H3K4me histone modification crosstalk.


Asunto(s)
Histona Metiltransferasas/ultraestructura , Histonas/ultraestructura , Cromatina/genética , Microscopía por Crioelectrón/métodos , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Proteínas Fúngicas/química , Histona Metiltransferasas/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Metiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleosomas/metabolismo , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
14.
Genes Dev ; 33(1-2): 49-54, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602440

RESUMEN

Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation, causing parental origin-specific monoallelic gene expression. Zinc finger protein 57 (ZFP57) is critical for maintenance of this epigenetic memory during post-fertilization reprogramming, yet incomplete penetrance of ZFP57 mutations in humans and mice suggests additional effectors. We reveal that ZNF445/ZFP445, which we trace to the origins of imprinting, binds imprinting control regions (ICRs) in mice and humans. In mice, ZFP445 and ZFP57 act together, maintaining all but one ICR in vivo, whereas earlier embryonic expression of ZNF445 and its intolerance to loss-of-function mutations indicate greater importance in the maintenance of human imprints.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Secuencia Conservada , Células Madre Embrionarias , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras , Factores de Transcripción/genética
15.
Nature ; 586(7828): 311-316, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788727

RESUMEN

Salicylic acid (SA) is a plant hormone that is critical for resistance to pathogens1-3. The NPR proteins have previously been identified as SA receptors4-10, although how they perceive SA and coordinate hormonal signalling remain unknown. Here we report the mapping of the SA-binding core of Arabidopsis thaliana NPR4 and its ligand-bound crystal structure. The SA-binding core domain of NPR4 refolded with SA adopts an α-helical fold that completely buries SA in its hydrophobic core. The lack of a ligand-entry pathway suggests that SA binding involves a major conformational remodelling of the SA-binding core of NPR4, which we validated using hydrogen-deuterium-exchange mass spectrometry analysis of the full-length protein and through SA-induced disruption of interactions between NPR1 and NPR4. We show that, despite the two proteins sharing nearly identical hormone-binding residues, NPR1 displays minimal SA-binding activity compared to NPR4. We further identify two surface residues of the SA-binding core, the mutation of which can alter the SA-binding ability of NPR4 and its interaction with NPR1. We also demonstrate that expressing a variant of NPR4 that is hypersensitive to SA could enhance SA-mediated basal immunity without compromising effector-triggered immunity, because the ability of this variant to re-associate with NPR1 at high levels of SA remains intact. By revealing the structural mechanisms of SA perception by NPR proteins, our work paves the way for future investigation of the specific roles of these proteins in SA signalling and their potential for engineering plant immunity.


Asunto(s)
Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/química , Arabidopsis/inmunología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Ligandos , Espectrometría de Masas , Modelos Moleculares , Mutación , Reguladores del Crecimiento de las Plantas/química , Inmunidad de la Planta , Unión Proteica , Dominios Proteicos/genética , Ácido Salicílico/química , Transducción de Señal
16.
Nature ; 582(7813): 571-576, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499656

RESUMEN

Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)1. However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45+ haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45+CD34+CD44+ yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.


Asunto(s)
Macrófagos/citología , Análisis de la Célula Individual , Linaje de la Célula , Embrión de Mamíferos/citología , Cabeza , Hematopoyesis , Humanos , Antígenos Comunes de Leucocito/metabolismo , Hígado/citología , Hígado/embriología , Pulmón/citología , Macrófagos/metabolismo , Microglía/citología , Células Progenitoras Mieloides/citología , RNA-Seq , Piel/citología , Análisis Espacio-Temporal , Transcriptoma , Saco Vitelino/citología
17.
Proc Natl Acad Sci U S A ; 120(26): e2214505120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339227

RESUMEN

Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación de Sueño/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Imagen por Resonancia Magnética/métodos
18.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38445884

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Interacciones Microbiota-Huesped , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Adenosina Trifosfatasas/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , COVID-19/virología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Helicasas/metabolismo , Concentración 50 Inhibidora , ARN Helicasas/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Femenino , Animales , Ratones
19.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837270

RESUMEN

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Asunto(s)
Hígado Graso , Hepatocitos , Ratones Noqueados , Obesidad , Animales , Ratones , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Hepatocitos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Selenoproteínas/metabolismo , Selenoproteínas/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo
20.
Nature ; 568(7751): 259-263, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944473

RESUMEN

The genetic compensation response (GCR) has recently been proposed as a possible explanation for the phenotypic discrepancies between gene-knockout and gene-knockdown1,2; however, the underlying molecular mechanism of the GCR remains uncharacterized. Here, using zebrafish knockdown and knockout models of the capn3a and nid1a genes, we show that mRNA bearing a premature termination codon (PTC) promptly triggers a GCR that involves Upf3a and components of the COMPASS complex. Unlike capn3a-knockdown embryos, which have small livers, and nid1a-knockdown embryos, which have short body lengths2, capn3a-null and nid1a-null mutants appear normal. These phenotypic differences have been attributed to the upregulation of other genes in the same families. By analysing six uniquely designed transgenes, we demonstrate that the GCR is dependent on both the presence of a PTC and the nucleotide sequence of the transgene mRNA, which is homologous to the compensatory endogenous genes. We show that upf3a (a member of the nonsense-mediated mRNA decay pathway) and components of the COMPASS complex including wdr5 function in GCR. Furthermore, we demonstrate that the GCR is accompanied by an enhancement of histone H3 Lys4 trimethylation (H3K4me3) at the transcription start site regions of the compensatory genes. These findings provide a potential mechanistic basis for the GCR, and may help lead to the development of therapeutic strategies that treat missense mutations associated with genetic disorders by either creating a PTC in the mutated gene or introducing a transgene containing a PTC to trigger a GCR.


Asunto(s)
Codón sin Sentido/genética , Prueba de Complementación Genética , Complejos Multiproteicos/metabolismo , ARN Mensajero/genética , Pez Cebra/genética , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Eliminación de Gen , Células HCT116 , Histonas/metabolismo , Humanos , Complejos Multiproteicos/química , Degradación de ARNm Mediada por Codón sin Sentido , Organismos Modificados Genéticamente , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA