Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Biotechnol J ; 22(6): 1740-1756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294722

RESUMEN

Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Oryza/genética , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Regulación de la Expresión Génica de las Plantas , Magnaporthe/fisiología , Ascomicetos
2.
Plant Physiol ; 189(2): 858-873, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078247

RESUMEN

Lateral roots (LRs) are a main component of the root system of rice (Oryza sativa) that increases root surface area, enabling efficient absorption of water and nutrients. However, the molecular mechanism regulating LR formation in rice remains largely unknown. Here, we report that histone deacetylase 1 (OsHDAC1) positively regulates LR formation in rice. Rice OsHDAC1 RNAi plants produced fewer LRs than wild-type plants, whereas plants overexpressing OsHDAC1 exhibited increased LR proliferation by promoting LR primordia formation. Brassinosteroid treatment increased the LR number, as did mutation of GSK3/SHAGGY-like kinase 2 (OsGSK2), whereas overexpression of OsGSK2 decreased the LR number. Importantly, OsHDAC1 could directly interact with and deacetylate OsGSK2, inhibiting its activity. OsGSK2 deacetylation attenuated the interaction between OsGSK2 and BRASSINAZOLE-RESISTANT 1 (OsBZR1), leading to accumulation of OsBZR1. The overexpression of OsBZR1 increased LR formation by regulating Auxin/IAA signaling genes. Taken together, the results indicate that OsHDAC1 regulates LR formation in rice by deactivating OsGSK2, thereby preventing degradation of OsBZR1, a positive regulator of LR primordia formation. Our findings suggest that OsHDAC1 is a breeding target in rice that can improve resource capture.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Triazoles
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446277

RESUMEN

Trichlorfon is an organophosphorus pesticide widely used in aquaculture and has potential neurotoxicity, but the underlying mechanism remains unclear. In the present study, zebrafish embryos were exposed to trichlorfon at concentrations (0, 0.1, 2 and 5 mg/L) used in aquaculture from 2 to 144 h post fertilization. Trichlorfon exposure reduced the survival rate, hatching rate, heartbeat and body length and increased the malformation rate of zebrafish larvae. The locomotor activity of larvae was significantly reduced. The results of molecular docking revealed that trichlorfon could bind to acetylcholinesterase (AChE). Furthermore, trichlorfon significantly inhibited AChE activity, accompanied by decreased acetylcholine, dopamine and serotonin content in larvae. The transcription patterns of genes related to acetylcholine (e.g., ache, chrna7, chata, hact and vacht), dopamine (e.g., drd4a and drd4b) and serotonin systems (e.g., tph1, tph2, tphr, serta, sertb, htrlaa and htrlab) were consistent with the changes in acetylcholine, dopamine, serotonin content and AChE activity. The genes related to the central nervous system (CNS) (e.g., a1-tubulin, mbp, syn2a, shha and gap-43) were downregulated. Our results indicate that the developmental neurotoxicity of trichlorfon might be attributed to disorders of cholinergic, dopaminergic and serotonergic signaling and the development of the CNS.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Pez Cebra/genética , Triclorfón/metabolismo , Compuestos Organofosforados/toxicidad , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Larva/metabolismo , Acetilcolina/metabolismo , Dopamina/metabolismo , Simulación del Acoplamiento Molecular , Serotonina/metabolismo , Plaguicidas/metabolismo , Embrión no Mamífero/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
J Environ Manage ; 305: 114378, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959058

RESUMEN

The application potential and environmental benefits of ground source heat pump (GSHP) systems have become the focal points of decarbonization in the building sector. Synchronized and scientific analysis of GSHP systems' environmental and economic performance, however, remains lacking. This study analyzes the application prospects of GSHP systems via a life cycle assessment-based life cycle costing method, and considers China's actual status quo. The internal and external annual costs of a GSHP system per square meter are $ 4.05 and $ 1.37, respectively. Electricity generation and steel production are key processes to improve the environmental performance of a GSHP system further. Compared with coal-based heating, a GSHP system can mitigate 65%-95% of the environmental impact and 85% of external costs, except for the metal depletion impact which is 1.5 times higher than that of coal-based heating. In Shandong Province, promoting GSHP systems can substitute up to 69.4% of the district heating area, which implies reductions in fossil depletion, greenhouse gas emissions, human health impact, ecosystem quality impact, and external costs by up to 2.37 × 1010 kg oil eq, 1.08 × 1011 kg CO2 eq, 3.87 × 105 DALY, 1.18 × 103 Species. year, and $ 2.51 × 1010, respectively. In consideration of environmental and economic aspects, a GSHP system can exhibit benefits compared with coal-based heating after 2.34 years of operation. To improve the economic and environmental performance of GSHP systems, a series of recommendations on financial subsidies, renewable energy development, inter-regional power transmission, steel scrap utilization, and hydrogen reduction steelmaking is provided.


Asunto(s)
Ecosistema , Calor , China , Carbón Mineral , Humanos , Energía Renovable
5.
Planta ; 253(3): 72, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33606144

RESUMEN

MAIN CONCLUSION: Comprehensive characterization of Gramineae HATs and HDACs reveals their conservation and variation. The recent WGD/SD gene pairs in the CBP and RPD/HDA1 gene family may confer specific adaptive evolutionary changes. Expression of OsHAT and OsHDAC genes provides a new vision in different aspects of development and response to diverse stress. The histone acetylase (HAT) and histone deacetylase (HDAC) have been proven to be tightly linked to play a crucial role in plant growth, development and response to abiotic stress by regulating histone acetylation levels. However, the evolutionary dynamics and functional differentiation of HATs and HDACs in Gramineae remain largely unclear. In the present study, we identified 37 HAT genes and 110 HDAC genes in seven Gramineae genomes by a detailed analysis. Phylogenetic trees of these HAT and HDAC proteins were constructed to illustrate evolutionary relationship in Gramineae. Gene structure, protein property and protein motif composition illustrated the conservation and variation of HATs and HDACs in Gramineae. Gene duplication analysis suggested that recent whole genome duplication (WGD)/segmental duplication (SD) events contributed to the diversification of the CBP and RPD3/HDA1 gene family in Gramineae. Furthermore, promoter cis-element prediction indicated that OsHATs and OsHDACs were likely functional proteins and involved in various signaling pathways. Expression analysis by RNA-seq data showed that all OsHAT and OsHDAC genes were expressed in different tissues or development stages, revealing that they were ubiquitously expressed. In addition, we found that their expression patterns were altered in response to cold, drought, salt, light, abscisic acid (ABA), and indole-3-acetic acid (IAA) treatments. These findings provide the basis for further identification of candidate OsHAT and OsHDAC genes that may be utilized in regulating growth and development and improving crop tolerance to abiotic stress.


Asunto(s)
Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Oryza/genética , Poaceae/genética , Estrés Fisiológico , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética
6.
Ecotoxicol Environ Saf ; 179: 119-126, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31035246

RESUMEN

Triphenyl phosphate (TPhP) is an organophosphate flame retardant that is frequently detected in the environments. TPhP exposure is known to cause developmental toxicity. However, the underlying molecular mechanisms remain underestimated. In the present study, zebrafish embryos were acutely exposed to 0, 4 and 100 µg/L TPhP until 144 h post-fertilization. Profiles of differentially expressed proteins were constructed using a shotgun proteomic. With the input of differential proteins, principal component analysis suggested different protein expression profiles for 4 and 100 µg/L TPhP. Gene ontology and KEGG pathway analyses further found that effects of TPhP at 4 µg/L targeted phagosome and lysosome activity, while 100 µg/L TPhP mainly affected carbohydrate metabolism, muscular contraction and phagosome. Based on proteomic data, diverse bioassays were employed to ascertain the effects of TPhP on specific proteins and pathways. At gene and protein levels, expressions of critical visual proteins were significantly changed by TPhP exposure, including retinoschisin 1a, opsins and crystallins, implying the impairment of ocular development and function. TPhP exposure at 100 µg/L also altered the abundances of diverse muscular proteins and disordered the assembly of muscle fibers. Effects of TPhP on visual development and motor activity may be combined to disturb larval swimming behavior. In summary, current results provided mechanistic clues to the developmental toxicities of TPhP. Future works are inspired to broaden the toxicological knowledge of TPhP based on current proteomic results.


Asunto(s)
Ojo/efectos de los fármacos , Retardadores de Llama/toxicidad , Músculo Esquelético/efectos de los fármacos , Organogénesis/efectos de los fármacos , Organofosfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/crecimiento & desarrollo , Animales , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Ojo/embriología , Larva/crecimiento & desarrollo , Larva/metabolismo , Músculo Esquelético/embriología , Proteómica , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
7.
Environ Sci Technol ; 52(7): 4432-4439, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29565584

RESUMEN

Accumulation of perfluorobutanesulfonate (PFBS) is frequently detected in biota, raising concerns about its ecological safety. However, hazardous effects of PFBS remain largely unexplored, especially for endocrine disrupting potency. In the present study, the multigenerational endocrine disrupting potential of PFBS was investigated by exposing F0 marine medaka eggs to PFBS at different concentrations (0, 1.0, 2.9, and 9.5 µg/L) until sexual maturity. The F1 and F2 generations were reared without continued exposure. Thyroidal disturbances were examined in all three generations. PFBS exposure decreased the levels of 3,5,3'-triiodothyronine (T3) in F0 female blood; however, it increased T3 or thyroxine (T4) levels in F0 brains, in which hyperthyroidism suppressed the local transcription of 5'-deiodinase 2 ( Dio2). Obviously decreased T3 was transferred to F1 eggs, although the parental influences were reversed in F1 larvae. Delayed hatching was coupled with elevated T3 levels in F1 larvae. F1 adults showed comparable symptoms of thyroidal disruption with F0 adults. A slight recovery was noted in the F2 generation, although F2 larvae still exhibited thyroid disruption and synthesized excessive T4. Our results suggested that the offspring suffered more severe dysfunction of the thyroidal axis albeit without direct exposure. This study provided the first molecular insight about PFBS toxicology on the thyroid, beneficial to both human and environmental risk assessment.


Asunto(s)
Disruptores Endocrinos , Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Estadios del Ciclo de Vida , Glándula Tiroides
8.
Environ Sci Technol ; 50(2): 1005-13, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26694738

RESUMEN

Titanium dioxide nanoparticles (n-TiO2) and bisphenol A (BPA) are widespread environmental contaminants in the aquatic environment. We hypothesized that n-TiO2 may adsorb BPA, and thus modify its bioavailability and toxicity to aquatic organisms. In this study, the bioavailability and toxicity of BPA (0, 2, 20, 200 µg/L) was investigated in the presence of n-TiO2 (100 µg/L). The n-TiO2 sorbed BPA and the resulting nanoparticles were taken up by zebrafish, where they translocated to the liver, brain, and gonad tissues. Increased tissue burdens of both BPA and n-TiO2 were observed following coexposure, and they also caused a reduction in plasma concentrations of estradiol (E2), testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Plasma vitellogenin (VTG) concentrations were significantly increased in males and females upon exposure to BPA. Histological examination of the ovary and testes did not show obvious morphological alterations; however, inhibition of egg production was noted in the presence of n-TiO2. The results indicated that n-TiO2 acts as a carrier of BPA and enhances its bioconcentration in zebrafish, leading to endocrine disruption and impairment of reproduction.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Nanopartículas/toxicidad , Fenoles/toxicidad , Reproducción/efectos de los fármacos , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Compuestos de Bencidrilo/farmacocinética , Disponibilidad Biológica , Disruptores Endocrinos/farmacocinética , Disruptores Endocrinos/toxicidad , Estradiol/sangre , Femenino , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Masculino , Ovario/efectos de los fármacos , Fenoles/farmacocinética , Testículo/efectos de los fármacos , Testosterona/sangre , Distribución Tisular , Titanio/farmacocinética , Vitelogeninas/sangre , Contaminantes Químicos del Agua/farmacocinética , Pez Cebra/fisiología
9.
Vaccine ; 42(2): 175-185, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38103966

RESUMEN

OBJECTIVES: To investigate factors that may influence humoral immunity post-vaccination with a COVID-19-inactivated vaccine (SC2IV). METHODS: A total of 1596 healthy individuals from the Seventh Affiliated Hospital, Sun Yat-sen University (1217) and Shenzhen Baotian Hospital (379) were enrolled in this study among which 694 and 218 participants were vaccinated with two-dose SC2IV, respectively. Physical examination indices were recorded. The levels of neutralizing antibody (NA), Spike IgG, receptor-binding domain (RBD) IgG, RBD IgG + IgM + IgA, and nucleocapsid IgG of SARS-CoV-2 were measured by a non-virus ELISA kit. Multiple statistical analyses were carried out to identify factors that influence humoral immunity post-vaccination. RESULTS: The two-dosage vaccination could induce NA in more than 90 % of recipients. The NA has the strongest correlation with anti-RBD IgG. Age is the most important independent index that affects the NA level, while basophil count, creatine kinase-MB, mean corpuscular hemoglobin, the ratio of albumin to urine creatinine, and thyroglobulin antibody have relatively minor contributions. Indices that affect the NA level were different between males and females. Antibodies targeting other epitopes of SARS-CoV-2 were detected in recipients without anti-RBD. CONCLUSIONS: The factors identified in association with the NA level post-vaccination may help to evaluate the protective effect, risk of re-infection, the severity of symptoms, and prognosis for vaccine recipients in clinical.


Asunto(s)
COVID-19 , Inmunidad Humoral , Femenino , Masculino , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Inmunoglobulina G , Anticuerpos Antivirales
10.
Chemosphere ; 334: 138944, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37211164

RESUMEN

Resorcinol bis(diphenyl phosphate) (RDP), an emerging organophosphorus flame retardant and alternative to triphenyl phosphate (TPHP), is a widespread environmental pollutant. The neurotoxicity of RDP has attracted much attention, as RDP exhibits a similar structure to TPHP, a neurotoxin. In this study, the neurotoxicity of RDP was investigated by using a zebrafish (Danio rerio) model. Zebrafish embryos were exposed to RDP (0, 0.3, 3, 90, 300 and 900 nM) from 2 to 144 h postfertilization. After this exposure, the decreased heart rates and body lengths and the increased malformation rates were observed. RDP exposure significantly reduced the locomotor behavior under light-dark transition stimulation and the flash stimulus response of larvae. Molecular docking results showed that RDP could bind to the active site of zebrafish AChE and that RDP and AChE exhibit potent binding affinity. RDP exposure also significantly inhibited AChE activity in larvae. The content of neurotransmitters (γ-aminobutyric, glutamate, acetylcholine, choline and epinephrine) was altered after RDP exposure. Key genes (α1-tubulin, mbp, syn2a, gfap, shhα, manf, neurogenin, gap-43 and ache) as well as proteins (α1-tubulin and syn2a) related to the development of the central nervous system (CNS) were downregulated. Taken together, our results showed that RDP can affect different parameters related to CNS development, eventually leading to neurotoxicity. This study indicated that more attention should be paid to the toxicity and environmental risk of emerging organophosphorus flame retardants.


Asunto(s)
Retardadores de Llama , Síndromes de Neurotoxicidad , Animales , Pez Cebra/metabolismo , Fosfatos/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/metabolismo , Larva/metabolismo , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/metabolismo , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Resorcinoles
11.
Cell Insight ; 2(4): 100112, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37388553

RESUMEN

R-loops are regulators of many cellular processes and are threats to genome integrity. Therefore, understanding the mechanisms underlying the regulation of R-loops is important. Inspired by the findings on RNase H1-mediated R-loop degradation or accumulation, we focused our interest on the regulation of RNase H1 expression. In the present study, we report that G9a positively regulates RNase H1 expression to boost R-loop degradation. CHCHD2 acts as a repressive transcription factor that inhibits the expression of RNase H1 to promote R-loop accumulation. Sirt1 interacts with CHCHD2 and deacetylates it, which functions as a corepressor that suppresses the expression of downstream target gene RNase H1. We also found that G9a methylated the promoter of RNase H1, inhibiting the binding of CHCHD2 and Sirt1. In contrast, when G9a was knocked down, recruitment of CHCHD2 and Sirt1 to the RNase H1 promoter increased, which co-inhibited RNase H1 transcription. Furthermore, knockdown of Sirt1 led to binding of G9a to the RNase H1 promoter. In summary, we demonstrated that G9a regulates RNase H1 expression to maintain the steady-state balance of R-loops by suppressing the recruitment of CHCHD2/Sirt1 corepressors to the target gene promoter.

12.
Aquat Toxicol ; 250: 106237, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35870252

RESUMEN

Polybrominated diphenyl ethers (PBDEs) can induce neurotoxicity, but the mechanism of their toxicity on the cholinergic system and locomotion behavior remains unclear. In this paper, zebrafish embryos were exposed to DE-71 (0, 1, 3, 10, 30, and 100 µg/L) until 120 h post fertilization, and its effects on the behavior and cholinergic system of zebrafish larvae and its possible mechanism were investigated. Results indicated a general locomotor activity impairment in the light-dark transition stimulation without affecting the secondary motoneurons. However, with the extension of test time in the dark or light, the decreased locomotor activity was diminished, a significant decrease only observed in the 100 µg/L DE-71 exposure groups in the last 10 min. Furthermore, whole-body acetylcholine (ACh) contents decreased after DE-71 exposure, whereas no changes in NO contents and inducible nitric oxide synthase activity were found. The expression of certain genes encoding calcium homeostasis proteins (e.g., grin1a, camk2a, and crebbpb) and the concentrations of calcium in zebrafish larvae were significantly decreased after DE-71 exposure. After co-exposure with calcium channel agonist (±)-BAY K8644, calcium concentrations, ACh contents, and locomotor activity in the light-dark transition stimulation was significantly increased compared with the same concentrations of DE-71 exposure alone, whereas no significant difference was observed compared with the control, indicating that calcium homeostasis is involved in the impairment of cholinergic neurotransmission and locomotor activity. Overall, our results suggested that DE-71 can impair the cholinergic system and locomotor activity by impairing calcium homeostasis. Our paper provides a better understanding of the neurotoxicity of PBDEs.


Asunto(s)
Éteres Difenilos Halogenados , Contaminantes Químicos del Agua , Acetilcolina/metabolismo , Animales , Calcio/metabolismo , Colinérgicos/metabolismo , Éteres Difenilos Halogenados/análisis , Homeostasis , Larva/fisiología , Locomoción , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
13.
Sci Rep ; 11(1): 22930, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824333

RESUMEN

The water temperature at the outlet of the production well is an important index for evaluating efficient geothermal exploration. The arrangement mode of injection wells and production wells directly affects the temperature distribution of the production wells. However, there is little information about the effect of different injection and production wells on the temperature field of production wells and rock mass, so it is critical to solve this problem. To study the influence mechanism of geothermal well arrangement mode on thermal exploration efficiency, the conceptual model of four geothermal wells is constructed by using discrete element software, and the influence law of different arrangement modes of four geothermal wells on rock mass temperature distribution is calculated and analyzed. The results indicated that the maximum water temperature at the outlet of the production well was 84.0 °C due to the thermal superposition effect of the rock mass between the adjacent injection wells and between the adjacent production wells. Inversely, the minimum water temperature at the outlet of the production well was 50.4 °C, which was determined by the convection heat transfer between the water flow and the rock between the interval injection wells and the interval production wells. When the position of the model injection well and production well was adjusted, the isothermal number line of rock mass was almost the same in value, but the direction of water flow and heat transfer was opposite. The study presented a novel mathematical modeling approach for calculating thermal exploration efficiency under various geothermal well layout conditions.

14.
J Hazard Mater ; 409: 124999, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454525

RESUMEN

Organophosphorus flame retardants (OPFRs) have been implicated as neurotoxicants, but their potential neurotoxicity and mechanisms remain poorly understood. Herein, we investigated the neurotoxicity of selected OPFRs using zebrafish as a model organism. Environmentally relevant concentrations (3-1500 nM) of three classes of OPFRs (aryl-OPFRs, chlorinated-OPFRs, and alkyl-OPFRs) were tested in zebrafish larvae (2-144 h post-fertilisation) alongside the neurotoxic chemical chlorpyrifos (CPF) that inhibits acetylcholinesterase (AChE). Exposure to aryl-OPFRs and CPF inhibited AChE activities, while chlorinated- and alkyl-OPFRs did not inhibit these enzymes. Biolayer interferometry (BLI) was used to probe interactions between OPFRs and AChE. The association and dissociation response curves showed that, like CPF, all three selected aryl-OPFRs, triphenyl phosphate (TPHP), tricresyl phosphate (TCP) and cresyl diphenyl phosphate (CDP), bound directly to AChE. The affinity constant (KD) for TPHP, TCP, CDP and CPF was 2.18 × 10-4, 5.47 × 10-5, 1.05 × 10-4 and 1.70 × 10-5 M, respectively. In addition, molecular docking revealed that TPHP, TCP, CDP and CPF bound to AChE with glide scores of - 7.8, - 8.3, - 8.1 and - 7.3, respectively. Furthermore, the calculated binding affinity between OPFRs and AChE correlated well with the KD values measured by BLI. The present study revealed that aryl-OPFRs can act as potent AChE inhibitors, and may therefore present a significant ecological risk to aquatic organisms.


Asunto(s)
Retardadores de Llama , Acetilcolinesterasa , Animales , Retardadores de Llama/toxicidad , Interferometría , Simulación del Acoplamiento Molecular , Organofosfatos , Compuestos Organofosforados/toxicidad , Pez Cebra
15.
J Agric Food Chem ; 69(43): 12880-12890, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34634902

RESUMEN

Lignin-carbohydrate complexes (LCCs) have recently emerged as natural products with pharmaceutical and nutraceutical potential. Here, we compared the structure of LCCs from ginkgo (GK, gymnosperms), wheat straw (WST, monocotyledons), and aspen white poplar (AW, dicotyledons). We also investigated the biotransformation of LCCs by intestinal microbiota in vitro. We found that human intestinal microbiota could use LCCs as a carbon source for growth, breaking resistant cross-linkages in LCCs to generate a plethora of short-chain fatty acids (SCFAs) and aromatic compounds with putative beneficial effects on human health. The yield of SCFAs reached 1837.8 ± 44.1 µmol/g using AW LCCs as a carbon source. The biomass of intestinal microbiota increased the fastest using GK LCCs. The greatest amounts of phenolics were present at 4 h in a WST LCCs fermentation system. Many phenolic acids with potential bioactivity were obtained after 24 h fermentation using each LCCs, such as ferulic acid.


Asunto(s)
Microbioma Gastrointestinal , Lignina , Biotransformación , Carbohidratos , Ácidos Grasos Volátiles , Humanos , Lignina/metabolismo
16.
Sci Total Environ ; 717: 137241, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070898

RESUMEN

Fast pyrolysis of lignin is still struggling in efficiency and scalable utilization. The low product selectivity thereby represents one of the most challenging issues. White-rot fungi have been widely used in bio-pretreatment of lignocellulosic biomass, where ligninolytic enzymes have been evidenced to modify lignin structures and enhance bio-refining efficiency. We thus treated lignin from both softwood (ginkgo) and hardwood (poplar) with enzymatic cocktail from white-rot fungus for fast pyrolysis. Both ginkgo and poplar lignin had much improved product selectivity at lower temperature after enzymatic modification, in particular, the 2-methoxy-phenol production from ginkgo lignin. Besides the improved product selectivity, the residue bio-char from pyrolysis had much improved surface area with more porous structures. Mechanistic study showed that the improvement of lignin pyrolysis products might attribute to demethoxylation and interunit linkage cleavage of lignin during enzymatic treatment. All these results highlighted that the product selectivity and bio-char performances have been synergistically improved by enzymatic treatment, which could thus pave a new way for enhancing fast pyrolysis efficiency. Overall, using softwood and hardwood lignin, this research has presented a new strategy using ligninolytic enzyme to modify lignin for synergistically improving product selectivity and bio-char performances, which opened up a new avenue for lignin valorization.


Asunto(s)
Lignina/metabolismo , Biomasa , Ginkgo biloba , Populus , Pirólisis , Temperatura
17.
Chemosphere ; 217: 732-741, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30448753

RESUMEN

Titanium dioxide (TiO2) nanoparticles and bisphenol A (BPA) in aquatic environments interact reciprocally to enhance the maternal transfer of pollutants to offspring, thus varying the innate toxicities during early embryonic development. However, it remains unexplored regarding the molecular mechanisms of developmental toxicity in offspring after parental coexposure. In the present study, adult zebrafish were exposed to TiO2 nanoparticles (100 µg/L), BPA (20 µg/L) or their binary mixture for four months. Then, eggs of F1 generation were collected and reared in clean water until 5 days post-fertilization. In characteristic of larval survival and growth, parental coexposure to TiO2 particles and BPA caused a severer inhibition of F1 offspring larvae compared with single exposure. Mechanistic investigation by shotgun proteomics found that development of larval offspring from coexposed parents was impaired through a distinct mode of toxicity, that is, specifically altering the activity of phagosome and lysosome. Single exposure of adult zebrafish to TiO2 mainly affected insulin-responsive compartment; and BPA parental exposure mainly affected carbohydrate metabolism and calcium signaling of larval offspring. Furthermore, considering the tight regulation of sex hormones in the expression of vitellogenin (VTG), addition of nanoparticles during parental exposure led to inconsistencies between VTG induction and endogenous levels of sex hormones (estradiol and testosterone) in F1 offspring fish. This implied that transfer of nanoparticles to offspring larvae may change the availability of hormonal molecules and BPA at target tissues. Overall, current results provided mechanistic clues into the multigenerational developmental toxicity by parental coexposure to TiO2 particles and BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Exposición Materna/efectos adversos , Exposición Paterna/efectos adversos , Fenoles/toxicidad , Titanio/toxicidad , Pez Cebra/crecimiento & desarrollo , Animales , Estradiol/análisis , Femenino , Larva/química , Masculino , Nanopartículas/química , Nanopartículas/toxicidad , Testosterona/análisis , Vitelogeninas , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología
18.
Aquat Toxicol ; 210: 139-147, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30851488

RESUMEN

Triphenyl phosphate (TPhP) has been shown to cause developmental neurotoxicty. Considering the visual system is a sensitive target, in the present study, we investigated the potential toxicity of TPhP on the visual development and function in zebrafish larvae. Embryos were exposed to 0, 0.1, 1, 10, and 30 µg/L TPhP from 2 to 144 h post-fertilization (hpf). The transcription of photoreceptor opsin genes, and histopathological changes in the retina and visual behavior (optokinetic and phototactic responses) were evaluated. TPhP significantly downregulated the transcription of opsin genes (zfrho, opn1sw1, opn1sw2, opn1mw1, opn1mw2, opn1mw3, opn1mw4, opn1lw1 and opn1lw2) in all exposure groups. Histopathological analysis revealed that the areas of the outer nuclear layer (ONL), inner nuclear layer (INL), and inner plexiform layer (IPL) of the retina were significantly reduced in the 10 and 30 µg/L TPhP groups. The number of ganglion cells was reduced significantly in the 30 µg/L group. The optokinetic response (OKR) and phototactic response showed dose-dependent decreases caused by impaired visual function, which was confirmed by unchanged locomotor activity. The results indicated that exposure to environmentally relevant concentrations of TPhP could inhibit the transcription of genes related to visual function and impair retinal development, thus leading to visual impairment in zebrafish larvae.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Organofosfatos/toxicidad , Fototaxis/efectos de los fármacos , Retina/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Relación Dosis-Respuesta a Droga , Larva , Retina/embriología , Retina/patología , Transcripción Genética/efectos de los fármacos , Visión Ocular/efectos de los fármacos , Visión Ocular/genética
19.
Aquat Toxicol ; 199: 46-54, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29605586

RESUMEN

Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in various environmental media and biota, and has been demonstrated as neurotoxic. Autophagy has been proposed as a protective mechanism against toxicant-induced neurotoxicity. The purpose of the present study was to investigate the effect of TDCIPP exposure on autophagy, and its role in TDCIPP-induced developmental neurotoxicity. Zebrafish embryos (2-120 h post-fertilization [hpf]) were exposed to TDCIPP (0, 5, 50 and 500 µg/l) and a model neurotoxic chemical, chlorpyrifos (CPF, 100 µg/l). The developmental endpoints, locomotive behavior, cholinesterase activities, gene and protein expression related to neurodevelopment and autophagy were measured in the larvae. Our results demonstrate that exposure to TDCIPP (500 µg/l) and CPF causes developmental toxicity, including reduced hatching and survival rates and increased malformation rate (e.g., spinal curvature), as well as altered locomotor behavior. The expression of selected neurodevelopmental gene and protein markers (e.g., mbp, syn2a, and α1-tubulin) was significantly down-regulated in CPF and TDCIPP exposed zebrafish larvae. Treatment with CPF significantly inhibits AChE and BChE, while TDCIPP (0-500 µg/l) exerts no effects on these enzymes. Furthermore, the conversion of microtubule-associated protein I (LC3 I) to LC3 II was significantly increased in TDCIPP exposed zebrafish larvae. In addition, exposure to TDCIPP also activates transcription of several critical genes in autophagy (e.g. Becn1, atg3, atg5, map1lc3b and sqstm1). To further investigate the role of autophagy in TDCIPP induced developmental neurotoxicity, an autophagy inducer (rapamycin, Rapa, 1 nM) and inhibitor (chloroquine, CQ, 1 µM) were used. The results demonstrate that the hatching rate, survival rate, and the expression of mbp and а1-tubulin proteins were all significantly increased in larvae treated with TDCIPP (500 µg/l) and Rapa compared to TDCIPP alone. In contrast, co-treatment with the autophagy inhibitor CQ results in exacerbated neurodevelopmental toxicity. Taken together, our results confirm that exposure to TDCIPP induces autophagy, which plays a protective role in TDCIPP-induced developmental neurotoxicity in zebrafish embryos and larvae.


Asunto(s)
Autofagia/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/crecimiento & desarrollo , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Embrión no Mamífero/efectos de los fármacos , Retardadores de Llama/toxicidad , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Locomoción/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo
20.
Aquat Toxicol ; 203: 80-87, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30096480

RESUMEN

Triphenyl phosphate (TPhP), a typical organophosphate ester, is frequently detected in the environment and biota samples. It has been implicated as a neurotoxin as its structure is similar to neurotoxic organophosphate pesticides. The purpose of the present study was to investigate its potential developmental neurotoxicity in fish by using zebrafish larvae as a model. Zebrafish (Danio rerio) embryos were exposed to 0.8, 4, 20 and 100 µg/L of TPhP from 2 until 144 h post-fertilization. TPhP was found to have high bioconcentrations in zebrafish larvae after exposure. Further, it significantly reduced locomotor activity as well as the heart rate at the 100 µg/L concentration. TPhP exposure significantly altered the content of the neurotransmitters γ-aminobutyric and histamine. Downregulation of the genes related to central nervous system development (e.g., α1-tubulin, mbp, syn2a, shha, and elavl3) as well as the corresponding proteins (e.g., α1-tubulin, mbp, and syn2a) was observed, but the gap-43 protein was found to upregulated. Finally, marked inhibition of total acetylcholinesterase activity, which is considered as a biomarker of neurotoxicant exposure, was also observed in the larvae. Our results indicate that exposure to environmentally relevant concentrations of TPhP can affect different parameters related to center nervous system development, and thus contribute to developmental neurotoxicity in early developing zebrafish larvae.


Asunto(s)
Neurotoxinas/toxicidad , Organofosfatos/toxicidad , Pez Cebra/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Exposición a Riesgos Ambientales/análisis , Larva/efectos de los fármacos , Larva/genética , Larva/metabolismo , Actividad Motora/efectos de los fármacos , Neurotransmisores/metabolismo , Soluciones , Transcripción Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA