Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12624, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824215

RESUMEN

This study aimed to identify factors that affect lymphovascular space invasion (LVSI) in endometrial cancer (EC) using machine learning technology, and to build a clinical risk assessment model based on these factors. Samples were collected from May 2017 to March 2022, including 312 EC patients who received treatment at Xuzhou Medical University Affiliated Hospital of Lianyungang. Of these, 219 cases were collected for the training group and 93 for the validation group. Clinical data and laboratory indicators were analyzed. Logistic regression and least absolute shrinkage and selection operator (LASSO) regression were used to analyze risk factors and construct risk models. The LVSI and non-LVSI groups showed statistical significance in clinical data and laboratory indicators (P < 0.05). Multivariable logistic regression analysis identified independent risk factors for LVSI in EC, which were myometrial infiltration depth, cervical stromal invasion, lymphocyte count (LYM), monocyte count (MONO), albumin (ALB), and fibrinogen (FIB) (P < 0.05). LASSO regression identified 19 key feature factors for model construction. In the training and validation groups, the risk scores for the logistic and LASSO models were significantly higher in the LVSI group compared with that in the non-LVSI group (P < 0.001). The model was built based on machine learning and can effectively predict LVSI in EC and enhance preoperative decision-making. The reliability of the model was demonstrated by the significant difference in risk scores between LVSI and non-LVSI patients in both the training and validation groups.


Asunto(s)
Neoplasias Endometriales , Aprendizaje Automático , Invasividad Neoplásica , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/diagnóstico , Persona de Mediana Edad , Factores de Riesgo , Medición de Riesgo/métodos , Anciano , Metástasis Linfática , Modelos Logísticos
2.
Nanomicro Lett ; 16(1): 85, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214822

RESUMEN

Electromagnetic interference shielding (EMI SE) modules are the core component of modern electronics. However, the traditional metal-based SE modules always take up indispensable three-dimensional space inside electronics, posing a major obstacle to the integration of electronics. The innovation of integrating 3D-printed conformal shielding (c-SE) modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE function without occupying additional space. Herein, the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity. Accordingly, the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing. In particular, the SE performance of 3D-printed frame is up to 61.4 dB, simultaneously accompanied with an ultralight architecture of 0.076 g cm-3 and a superhigh specific shielding of 802.4 dB cm3 g-1. Moreover, as a proof-of-concept, the 3D-printed c-SE module is in situ integrated into core electronics, successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipation. Thus, this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.

3.
Carbohydr Polym ; 342: 122362, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048191

RESUMEN

Cellulose possesses numerous favorable peculiarities to replace petroleum-based materials. Nevertheless, the extremely high hygroscopicity of cellulose severely degrades their mechanical performance, which is a major obstacle to the production of high-strength, multi-functional cellulose-based materials. In this work, a simple strategy was proposed to fabricate durable versatile nanocellulose films based on sustaining CO2 capture and in-situ calcification. In this strategy, Ca(OH)2 was in-situ formed on the films by Ca2+ crosslinking and subsequent introduction of OH-, which endowed the films with high mechanical strength and carbon sequestration ability. The following CO2 absorption process continuously improved the water resistance and durability of the films, and enabled them to maintain excellent mechanical properties and promising light management ability. After a 30-day CO2 absorption process, the water contact angle of the films can be increased from 43° to 79°, and the weight gain rate of the films in a 30 h water-absorption process can be sharply decreased from 331.2 % to 52.2 %. The films could maintain a high tensile strength of 340 MPa, and result in a CO2 absorption rate of 3.5 mmol/gcellulose after 30 days. In this study, the improvement of durability and carbon sequestration of nanocellulose films was achieved by a simple and effective method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA