RESUMEN
Nanocatalytic medicine is a burgeoning disease treatment model with high specificity and biosafety in which the nanocatalyst is the core of driving catalytic reaction to generate therapeutic outcomes. However, the robust defense systems in the pathological region would counteract nanocatalyst-initiated therapeutics. Here, a Cu-doped polypyrrole is innovatively developed by a facile oxidative polymerization reaction, which exhibits intriguing multi-catalytic activities, including catalyzing H2 O2 to generate O2 and · OH, and consuming reduced glutathione by a Cu(II)-Cu(I) transition approach. By decorating with sonosensitizers and DSPE-PEG, the obtained CuPPy-TP plus US irradiation can induce severe oxidative damage to tumor cells by amplifying oxidative stress and simultaneously relieving antioxidant capacity in tumors based on the highly effective sonochemical and redox reactions. The notable tumor-specific biodegradability, remarkable cell apoptosis in vitro, and tumor suppression in vivo are demonstrated in this work, which not only present a promising biocompatible antitumor nanocatalyst but also broaden the perspective in oxidative stress-based antitumor therapy.
Asunto(s)
Polímeros , Pirroles , Catálisis , Línea Celular Tumoral , Peróxido de Hidrógeno/farmacología , Polímeros/farmacología , Microambiente TumoralRESUMEN
Despite targeted therapies like epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), non-small cell lung cancer (NSCLC) remains a clinical challenge due to drug resistance hampering their efficacy. Here, we designed an "AND" logic gate-based supramolecular therapeutic platform (HA-BPY-GEF-NPs) for the treatment of EGFR-TKI resistant NSCLC. This system integrates both internal and external stimuli-responsive mechanisms that need to be activated in a preset sequence, enabling it to precisely control drug release behavior for enhancing therapeutic precision. By programming the system to respond to sequential near-infrared (NIR) irradiation and enzyme (cathepsin B) inputs, the release of gefitinib is effectively confined to the tumor region. Moreover, the NIR irradiation induces reactive oxygen species production, suppressing tumor growth and inhibiting bypass signaling pathways. The designed drug delivery system offers a highly controlled and targeted therapeutic approach, effectively inhibiting tumor growth, suppressing bypass signaling pathways, and overcoming EGFR-TKI resistance, thus offering a potential solution for maximizing therapeutic benefits.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ratones , Gefitinib/farmacología , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Sistemas de Liberación de Medicamentos , Ensayos Antitumor por Modelo de Xenoinjerto , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Nanomedicine has reshaped the landscape of cancer treatment. However, its efficacy is still hampered by innate tumor defense systems that rely on adenosine triphosphate (ATP) for fuel, including damage repair, apoptosis resistance, and immune evasion. Inspired by the naturally enzymatic reaction of glucose oxidase (GOx) with glucose, here a novel "two birds with one stone" technique for amplifying enzyme-mediated tumor apoptosis and enzyme-promoted metabolic clearance is proposed and achieved using GOx-functionalized rhenium nanoclusters-doped polypyrrole (Re@ReP-G). Re@ReP-G reduces ATP production while increasing H2O2 concentrations in the tumor microenvironment through GOx-induced enzymatic oxidation, which in turn results in the downregulation of defense (HSP70 and HSP90) and anti-apoptotic Bcl-2 proteins, the upregulation of pro-apoptotic Bax, and the release of cytochrome c. These processes are further facilitated by laser-induced hyperthermia effect, ultimately leading to severe tumor apoptosis. As an enzymatic byproduct, H2O2 catalyzes the conversion of rhenium nanoclusters in Re@ReP-G nanostructures into rhenate from the outside in, which accelerates their metabolic clearance in vivo. This Re@ReP-G-based "two birds with one stone" therapeutic strategy provides an effective tool for amplifying tumor apoptosis and safe metabolic mechanisms.
Asunto(s)
Apoptosis , Animales , Ratones , Glucosa Oxidasa/metabolismo , Neoplasias/metabolismo , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Nanomedicina/métodos , Microambiente Tumoral , Peróxido de Hidrógeno/metabolismo , Polímeros/química , Polímeros/metabolismoRESUMEN
Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.
Asunto(s)
Nanopartículas , Fotoquimioterapia , Profármacos , Micelas , Fotoquimioterapia/métodos , Dextranos , Profármacos/farmacología , Profármacos/uso terapéutico , Luminiscencia , Peróxido de Hidrógeno , Luminol , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéuticoRESUMEN
Human serum albumin (HSA) based drug delivery platforms that feature desirable biocompatibility and pharmacokinetic property are rapidly developed for tumor-targeted drug delivery. Even though various HSA-based platforms have been established, it is still of great significance to develop more efficient preparation technology to broaden the therapeutic applications of HSA-based nano-carriers. Here we report a bridging strategy that unfastens HSA to polypeptide chains and subsequently crosslinks these chains by a bridge-like molecule (BPY-Mal2) to afford the HSA reassemblies formulation (BPY@HSA) with enhanced loading capacity, endowing the BPY@HSA with uniformed size, high photothermal efficacy, and favorable therapeutic features. Both in vitro and in vivo studies demonstrate that the BPY@HSA presents higher delivery efficacy and more prominent photothermal therapeutic performance than that of the conventionally prepared formulation. The feasibility in preparation, stability, high photothermal conversion efficacy, and biocompatibility of BPY@HSA may facilitate it as an efficient photothermal agents (PTAs) for tumor photothermal therapy (PTT). This work provides a facile strategy to enhance the loading capacity of HSA-based crosslinking platforms in order to improve delivery efficacy and therapeutic effect.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Albúmina Sérica Humana/química , Terapia Fototérmica , Línea Celular Tumoral , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Nanopartículas/química , FototerapiaRESUMEN
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer-immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer-immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer-immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer-immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
RESUMEN
Natural killer (NK) cells exert cytotoxic effects against infected or stressed cells, such as tumor cells, without the limitation of major histocompatibility complex (MHC) I. NK cells secrete perforins to form tunnels to mediate the entry of granzyme into target cells. This strategy, selected by natural evolution, provides a feasible method for the delivery of antitumor drugs against intracellular targets, and avoids drug-resistant mechanisms in tumor cells, such as the pumping out of drugs mediated by multidrug resistance. We constructed pH-labile artificial NK cells (ANKC) based on nature to mediate high levels of drugs in tumor cells to overcome tumor drug resistance. Mesoporous silicon nanoparticles (MSNs) modified with benzaldehyde were designed to function as scaffolds for ANKC. Doxorubicin (Dox), a model antitumor drug, was loaded into the pores of MSNs. Melittin, a pore-forming peptide, was utilized as the gate for mesopores with an acid-labile Schiff base linkage. pH-labile ANKC released melittin and Dox in slightly acidic tumor microenvironments. Melittin, like perforin, assembled tunnels on the plasma membrane or endosome, ensuring the intracellular transportation of Dox. Dox, similar to granzyme, induced the apoptosis of tumor cells. The combinational treatment partially eased the drug resistance mechanism, such as pumping out of drugs, by continuous intracellular drug accumulation mediated by melittin pores. The pH-labile ANKC demonstrated significant Dox enrichment in drug-resistant MCF-7/Adr cells and MCF-7/Adr-based xenograft tumors in a mouse model, which eventually contributed to efficient inhibition of the proliferation and growth of MCF-7/Adr tumors. PH-labile ANKC provided a potential strategy to treat drug-resistant tumors.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Ratones , Animales , Humanos , Femenino , Meliteno/farmacología , Granzimas , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Concentración de Iones de Hidrógeno , Células Asesinas Naturales , Neoplasias de la Mama/tratamiento farmacológico , Microambiente TumoralRESUMEN
Chemodynamic therapy (CDT) by triggering Fenton reaction or Fenton-like reaction to generate hazardous hydroxyl radical (â¢OH), is a promising strategy to selectively inhibit tumors with higher H2O2 levels and relatively acidic microenvironment. Current Fe-based Fenton nanocatalysts mostly depend on slowly releasing iron ions from Fe or Fe oxide-based nanoparticles, which leads to a limited rate of Fenton reaction. Herein, we employed black phosphorene nanosheets (BPNS), a biocompatible and biodegradable photothermal material, to develop iron-mineralized black phosphorene nanosheet (BPFe) by in situ deposition method for chemodynamic and photothermal combination cancer therapy. This study demonstrated that the BPFe could selectively increase cytotoxic ·OH in tumor cells whereas having no influence on normal cells. The IC50 of BPFe for tested tumor cells was about 3-6 µg/mL, which was at least one order of magnitude lower than previous Fe-based Fenton nanocatalysts. The low H2O2 level in normal mammalian cells guaranteed the rare cytotoxicity of BPFe. Moreover, the combination of photothermal therapy (PTT) with CDT based on BPFe was proved to kill tumors more potently with spatiotemporal accuracy, which exhibited excellent anti-tumor effects in xenografted MCF-7 tumor mice models.
Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Nanoestructuras/química , Neoplasias/patología , Terapia Fototérmica/métodos , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Humanos , Peróxido de Hidrógeno/metabolismo , Concentración 50 Inhibidora , Hierro/química , Ratones , Fósforo/química , Distribución Aleatoria , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.