Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Biol Sci ; 291(2014): 20231557, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196368

RESUMEN

Helicostoa sinensis E. Lamy, 1926 is a unique freshwater gastropod species with a sessile habit. This enigmatic species was first found cemented on river limestones from China about 120 years ago and described together with the genus. It was never collected again and has been considered monotypic. Here, we report the rediscovery of Helicostoa from several rivers in China, and describe a second species of this genus based on a comprehensive study. In addition to the unique sessile habit of both species, the new Helicostoa species presents one of the most remarkable cases of sexual dimorphism within molluscs. Only the adult female is sessile and the original aperture of the female is sealed by shell matter or rock, while an opening on the body whorl takes the function of the original aperture. The male is vagile, with a normal aperture. Our results confirm the recently suggested placement of Helicostoa within the family Bithyniidae. The sessility of Helicostoa species is considered as an adaption to the limestone habitat in large rivers. The extreme sexual dimorphism and secondary aperture of females are considered as adaptations to overcome the obstacles for mating and feeding that come with a sessile life style.


Asunto(s)
Agua Dulce , Caracteres Sexuales , Femenino , Masculino , Animales , Ríos , Carbonato de Calcio , Caracoles
2.
J Org Chem ; 89(4): 2127-2137, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38270538

RESUMEN

The hitherto unknown hexakis(halomethyl)-functionalized tribenzotriquinacenes (TBTQs) 9 and 10 were synthesized from the key 4b,8b,12b-tribromo-TBTQ derivative 6 by an improved route in 67% overall yield. Extension of the bowl-shaped framework of 9 or 10 by threefold condensation with propargylamine or 2-azidoethylamine afforded the corresponding TBTQ-trialkyne 11 and TBTQ-triazide 12, respectively. While attempts to construct bis-TBTQ cages, including homodimerization of 11 and heterocoupling of 11 with 12, were unsuccessful, triazide 12 was found to undergo threefold [3 + 2]-cycloaddition with 3-ethynylaniline and phloroglucinol tripropargyl ether under click chemistry conditions. The latter reaction enabled facile capping of the TBTQ bowl to give the novel cage compound 5 in 22% yield.

3.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611793

RESUMEN

Reported herein is a Paternò-Büchi reaction of aromatic double bonds with quinones under visible light irradiation. The reactions of aromatics with quinones exposed to blue LED irradiation yielded oxetanes at -78 °C, which was attributed to both the activation of double bonds in aromatics and the stabilization of oxetanes by thiadiazole, oxadiazole, or selenadiazole groups. The addition of Cu(OTf)2 to the reaction system at room temperature resulted in the formation of diaryl ethers via the copper-catalyzed ring opening of oxetanes in situ. Notably, the substrate scope was extended to general aromatics.

4.
Hereditas ; 160(1): 39, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102686

RESUMEN

BACKGROUND: As an anticancer Chinese herbal medicine, the effective components and mechanism of Actinidia chinensis Planch (ACP, Tengligen) in the treatment of colon cancer are still unclear. In the present study, the integration of network pharmacology, molecular docking, and cell experiments was employed to study the effective mechanism of ACP against colon cancer. METHODS: The Venn diagram and STRING database were used to construct the protein-protein interaction network (PPI) of ACP-colon cancer, and further topological analysis was used to obtain the key target genes of ACP in colon cancer. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to visualize the related functions and pathways. Molecular docking between key targets and compounds was determined using software such as AutoDockTools. Finally, the effect of ACP on CT26 cells was observed in vitro. RESULTS: The study identified 40 ACP-colon key targets, including CASP3, CDK2, GSK3B, and PIK3R1. GO and KEGG enrichment analyses found that these genes were involved in 211 biological processes and 92 pathways, among which pathways in cancer, PI3K-Akt, p53, and cell cycle might be the main pathways of ACP against colon cancer. Molecular docking verified that the key components of ACP could stably bind to the corresponding targets. The experimental results showed that ACP could inhibit proliferation, induce apoptosis, and downregulate the phosphorylation of PIK3R1, Akt, and GSK3B in CT26 cells. CONCLUSION: ACP is an anti-colon cancer herb with multiple components, and involvement of multiple target genes and signaling pathways. ACP can significantly inhibit proliferation and induce apoptosis of colon cancer cells, which may be closely related to the regulation of PI3K/AKT/GSK3B signal transduction.


Asunto(s)
Actinidia , Neoplasias del Colon , Simulación del Acoplamiento Molecular , Actinidia/genética , Farmacología en Red , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factores de Transcripción
5.
Oncol Lett ; 27(6): 274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694571

RESUMEN

Acute promyelocytic leukemia (APL), especially cases of high-risk with complex chromosomes (CK), is rare in individuals infected with human immunodeficiency virus (HIV), making the establishment of therapeutic approaches challenging; often the treatment is individualized. This report describes a 49-year-old female patient with HIV who was diagnosed with high-risk APL with a new CK translocation and presents a literature review. At diagnosis, the patient presented with typical t(15;17)(q24;q21) with additional abnormalities, including add(5)(q15), add(5)(q31), add(7)(q11.2) and add(12) (p13). The results of acute myeloid leukemia mutation analysis suggested positivity for calreticulin and lysine methyltransferase 2C genes. The patient received all-trans retinoic acid combined with arsenic trioxide and chemotherapy, with morphologically complete remission after the first cycle of chemotherapy. The present report provided preliminary data for future clinical research.

6.
J Blood Med ; 15: 325-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086399

RESUMEN

Multiple myeloma (MM) is a malignancy of plasma cells that can cause anemia due to renal failure and bone marrow failure. Secondary polycythemia (SE) is a clinically rare disease that involves the overproduction of red blood cells. To our knowledge, the association of multiple myeloma and polycythemia has been reported, but the association of SE and multiple myeloma is rare and has been infrequently reported in literature. In contrast to anemia, the presence of polycythemia in multiple myeloma patients is a rare finding. A patient of IgA-λ multiple myeloma with secondary erythrocytosis recently admitted to our department is now reported as follows and relevant literature is reviewed to improve clinicians' awareness of such rare comorbidities.

7.
Blood Adv ; 8(7): 1587-1599, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170757

RESUMEN

ABSTRACT: Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive subtype of lymphoma with clinical and biological heterogeneity. The International Prognostic Index (IPI) shows great prognostic capability in the era of rituximab, but the biological signatures of IPI remain to be discovered. In this study, we analyzed the clinical data in a large cohort of 2592 patients with newly diagnosed DLBCL. Among them, 1233 underwent DNA sequencing for oncogenic mutations, and 487 patients underwent RNA sequencing for lymphoma microenvironment (LME) alterations. Based on IPI scores, patients were categorized into 4 distinct groups, with 5-year overall survival of 41.6%, 55.3%, 71.7%, and 89.7%, respectively. MCD-like subtype was associated with age of >60 years, multiple extranodal involvement, elevated serum lactate dehydrogenase (LDH), and IPI scores ranging from 2 to 5, whereas ST2-like subtype showed an opposite trend. Patients with EZB-like MYC+ and TP53Mut subtypes exhibited poor clinical outcome independent of the IPI; integrating TP53Mut into IPI could better distinguish patients with dismal survival. The EZB-like MYC-, BN2-like, N1-like, and MCD-like subtypes had inferior prognosis in patients with IPI scores of ≥2, indicating necessity for enhanced treatment. Regarding LME categories, the germinal center-like LME was more prevalent in patients with normal LDH and IPI scores of 0 to 1. The mesenchymal LME served as an independent protective factor, whereas the germinal center-like, inflammatory, and depleted LME categories correlated with inferior prognosis for IPI scores of 2 to 5. In summary, our work explored the biological signatures of IPI, thus providing useful rationale for future optimization of the IPI-based treatment strategies with multi-omics information in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Persona de Mediana Edad , Pronóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Rituximab/uso terapéutico , Centro Germinal/patología , Microambiente Tumoral
8.
Int Immunopharmacol ; 139: 112710, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029229

RESUMEN

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.


Asunto(s)
Apigenina , Glucuronatos , Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno , Apigenina/farmacología , Apigenina/uso terapéutico , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Necroptosis/efectos de los fármacos , Masculino , Quinasas Quinasa Quinasa PAM/metabolismo , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación , Lactonas , Resorcinoles
9.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143050

RESUMEN

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Asunto(s)
Mitocondrias , Mitofagia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Ratones , Humanos , Fosforilación Oxidativa , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Neurogénesis
11.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767472

RESUMEN

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA