Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 12(9): e1006262, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27588417

RESUMEN

To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations.


Asunto(s)
Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas del Grupo Polycomb/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Chaperonas de Histonas/biosíntesis , Chaperonas de Histonas/genética , Histonas/genética , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Mutación , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/biosíntesis , Factores de Transcripción/biosíntesis
2.
PLoS Genet ; 11(11): e1005642, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26540204

RESUMEN

During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/fisiología , Quinasa I-kappa B/metabolismo , Células Receptoras Sensoriales/citología , Animales , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Dineínas/metabolismo , Fosforilación
3.
EMBO Rep ; 16(4): 528-38, 2015 04.
Artículo en Inglés | MEDLINE | ID: mdl-25666827

RESUMEN

Many causal mutations of intellectual disability have been found in genes involved in epigenetic regulations. Replication-independent deposition of the histone H3.3 variant by the HIRA complex is a prominent nucleosome replacement mechanism affecting gene transcription, especially in postmitotic neurons. However, how HIRA-mediated H3.3 deposition is regulated in these cells remains unclear. Here, we report that dBRWD3, the Drosophila ortholog of the intellectual disability gene BRWD3, regulates gene expression through H3.3, HIRA, and its associated chaperone Yemanuclein (YEM), the fly ortholog of mammalian Ubinuclein1. In dBRWD3 mutants, increased H3.3 levels disrupt gene expression, dendritic morphogenesis, and sensory organ differentiation. Inactivation of yem or H3.3 remarkably suppresses the global transcriptome changes and various developmental defects caused by dBRWD3 mutations. Our work thus establishes a previously unknown negative regulation of H3.3 and advances our understanding of BRWD3-dependent intellectual disability.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Chaperonas de Histonas/genética , Histonas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Morfogénesis/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción/metabolismo
4.
BMC Genomics ; 17: 220, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26969372

RESUMEN

BACKGROUND: Recent advances in sequencing technology have opened a new era in RNA studies. Novel types of RNAs such as long non-coding RNAs (lncRNAs) have been discovered by transcriptomic sequencing and some lncRNAs have been found to play essential roles in biological processes. However, only limited information is available for lncRNAs in Drosophila melanogaster, an important model organism. Therefore, the characterization of lncRNAs and identification of new lncRNAs in D. melanogaster is an important area of research. Moreover, there is an increasing interest in the use of ChIP-seq data (H3K4me3, H3K36me3 and Pol II) to detect signatures of active transcription for reported lncRNAs. RESULTS: We have developed a computational approach to identify new lncRNAs from two tissue-specific RNA-seq datasets using the poly(A)-enriched and the ribo-zero method, respectively. In our results, we identified 462 novel lncRNA transcripts, which we combined with 4137 previously published lncRNA transcripts into a curated dataset. We then utilized 61 RNA-seq and 32 ChIP-seq datasets to improve the annotation of the curated lncRNAs with regards to transcriptional direction, exon regions, classification, expression in the brain, possession of a poly(A) tail, and presence of conventional chromatin signatures. Furthermore, we used 30 time-course RNA-seq datasets and 32 ChIP-seq datasets to investigate whether the lncRNAs reported by RNA-seq have active transcription signatures. The results showed that more than half of the reported lncRNAs did not have chromatin signatures related to active transcription. To clarify this issue, we conducted RT-qPCR experiments and found that ~95.24% of the selected lncRNAs were truly transcribed, regardless of whether they were associated with active chromatin signatures or not. CONCLUSIONS: In this study, we discovered a large number of novel lncRNAs, which suggests that many remain to be identified in D. melanogaster. For the lncRNAs that are known, we improved their characterization by integrating a large number of sequencing datasets (93 sets in total) from multiple sources (lncRNAs, RNA-seq and ChIP-seq). The RT-qPCR experiments demonstrated that RNA-seq is a reliable platform to discover lncRNAs. This set of curated lncRNAs with improved annotations can serve as an important resource for investigating the function of lncRNAs in D. melanogaster.


Asunto(s)
Drosophila melanogaster/genética , ARN Largo no Codificante/genética , Animales , Cromatina/genética , Inmunoprecipitación de Cromatina , Anotación de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
6.
Cell Death Dis ; 13(6): 546, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688824

RESUMEN

This study used DNA methyltransferase 3b (DNMT3b) knockout cells and the functional loss of DNMT3b mutation in immunodeficiency-centromeric instability-facial anomalies syndrome (ICF) cells to understand how DNMT3b dysfunction causes genome instability. We demonstrated that R-loops contribute to DNA damages in DNMT3b knockout and ICF cells. More prominent DNA damage signal in DNMT3b knockout cells was due to the loss of DNMT3b expression and the acquirement of p53 mutation. Genome-wide ChIP-sequencing mapped DNA damage sites at satellite repetitive DNA sequences including (peri-)centromere regions. However, the steady-state levels of (peri-)centromeric R-loops were reduced in DNMT3b knockout and ICF cells. Our analysis indicates that XPG and XPF endonucleases-mediated cleavages remove (peri-)centromeric R-loops to generate DNA beaks, causing chromosome instability. DNMT3b dysfunctions clearly increase R-loops susceptibility to the cleavage process. Finally, we showed that DNA double-strand breaks (DSBs) in centromere are probably repaired by error-prone end-joining pathway in ICF cells. Thus, DNMT3 dysfunctions undermine the integrity of centromere by R-loop-mediated DNA damages and repair.


Asunto(s)
Síndromes de Inmunodeficiencia , Estructuras R-Loop , Animales , Centrómero/genética , Centrómero/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Daño del ADN/genética , Metilación de ADN , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Mutación , ADN Metiltransferasa 3B
7.
Autophagy ; 17(11): 3444-3460, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33465003

RESUMEN

Genotoxic insult causes nuclear and mitochondrial DNA damages with macroautophagy/autophagy induction. The role of mitochondrial DNA (mtDNA) damage in the requirement of autophagy for nuclear DNA (nDNA) stability is unclear. Using site-specific DNA damage approaches, we show that specific nDNA damage alone does not require autophagy for repair unless in the presence of mtDNA damage. We provide evidence that after IR exposure-induced mtDNA and nDNA damages, autophagy suppression causes non-apoptotic mitochondrial permeability, by which mitochondrial ENDOG (endonuclease G) is released and translocated to nuclei to sustain nDNA damage in a TET (tet methylcytosine dioxygenase)-dependent manner. Furthermore, blocking lysosome function is sufficient to increase the amount of mtDNA leakage to the cytosol, accompanied by ENDOG-free mitochondrial puncta formation with concurrent ENDOG nuclear accumulation. We proposed that autophagy eliminates the mitochondria specified by mtDNA damage-driven mitochondrial permeability to prevent ENDOG-mediated genome instability. Finally, we showed that HBx, a hepatitis B viral protein capable of suppressing autophagy, also causes mitochondrial permeability-dependent ENDOG mis-localization in nuclei and is linked to hepatitis B virus (HBV)-mediated hepatocellular carcinoma development.Abbreviations: 3-MA: 3-methyladenine; 5-hmC: 5-hydroxymethylcytosine; ACTB: actin beta; ATG5: autophagy related 5; ATM: ATM serine/threonine kinase; DFFB/CAD: DNA fragmentation factor subunit beta; cmtDNA: cytosolic mitochondrial DNA; ConA: concanamycin A; CQ: chloroquine; CsA: cyclosporin A; Dox: doxycycline; DSB: double-strand break; ENDOG: endonuclease G; GFP: green fluorescent protein; Gy: gray; H2AX: H2A.X variant histone; HBV: hepatitis B virus; HBx: hepatitis B virus X protein; HCC: hepatocellular carcinoma; I-PpoI: intron-encoded endonuclease; IR: ionizing radiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOMP: mitochondrial outer membrane permeability; mPTP: mitochondrial permeability transition pore; mtDNA: mitochondrial DNA; nDNA: nuclear DNA; 4-OHT: 4-hydroxytamoxifen; rDNA: ribosomal DNA; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TET: tet methylcytosine dioxygenase; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.


Asunto(s)
Autofagia/genética , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Endodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Transporte Activo de Núcleo Celular , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/antagonistas & inhibidores , Dioxigenasas/genética , Dioxigenasas/metabolismo , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA