Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 18(9): e3000828, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32936797

RESUMEN

Many herbivorous insects are mono- or oligophagous, having evolved to select a limited range of host plants. They specifically identify host-plant leaves using their keen sense of taste. Plant secondary metabolites and sugars are thought to be key chemical cues that enable insects to identify host plants and evaluate their quality as food. However, the neuronal and behavioral mechanisms of host-plant recognition are poorly understood. Here, we report a two-factor host acceptance system in larvae of the silkworm Bombyx mori, a specialist on several mulberry species. The first step is controlled by a chemosensory organ, the maxillary palp (MP). During palpation at the leaf edge, the MP detects trace amounts of leaf-surface compounds, which enables host-plant recognition without biting. Chemosensory neurons in the MP are tuned with ultrahigh sensitivity (thresholds of attomolar to femtomolar) to chlorogenic acid (CGA), quercetin glycosides, and ß-sitosterol (ßsito). Only if these 3 compounds are detected does the larva make a test bite, which is evaluated in the second step. Low-sensitivity neurons in another chemosensory organ, the maxillary galea (MG), mainly detect sucrose in the leaf sap exuded by test biting, allowing larvae to accept the leaf and proceed to persistent biting (feeding). The two-factor host acceptance system reported here may commonly underlie stereotyped feeding behavior in many phytophagous insects and determine their feeding habits.


Asunto(s)
Bombyx/fisiología , Conducta de Elección , Dieta , Conducta Alimentaria/fisiología , Larva/fisiología , Papilas Gustativas/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Conducta Animal/fisiología , Bombyx/anatomía & histología , Bombyx/crecimiento & desarrollo , Células Quimiorreceptoras/fisiología , Quimiotaxis/fisiología , Señales (Psicología) , Conducta Exploratoria/fisiología , Interacciones Huésped-Parásitos/fisiología , Larva/anatomía & histología , Larva/citología , Morus/química , Hojas de la Planta/química , Gusto/fisiología , Papilas Gustativas/anatomía & histología
2.
Biochem Biophys Res Commun ; 499(4): 901-906, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29625111

RESUMEN

The taste sensing system is crucial for food recognition in insects and other animals. It is commonly believed that insect gustatory receptors (Grs) expressed in gustatory organs are indispensable for host plant selection. Many behavioral studies have shown that mono- or oligo-phagous lepidopteran insects use the balance between feeding attractants and feeding deterrents in host plants and that these are sensed by taste organs for host plant recognition. However, the molecular mechanism underlying taste recognition, especially of feeding deterrents, remains to be elucidated. To better understand this mechanism, we studied orphan Grs, including Bombyx mori Gr (BmGr) 16, BmGr18, and BmGr53, from the mono-phagous insect, Bombyx mori. Using Calcium imaging in mammalian cells, we first confirmed in lepidoptera insects that three of the putative bitter Grs widely responded to structurally different feeding deterrents. Although the phylogenetic distance of these Grs was considerable, they responded to partially overlapping deterrents of plant secondary metabolites. These findings suggest that not only these three Grs but also most of the Grs that have been assigned to putative bitter Grs are feeding-deterrent receptors that play a role in host plant recognition.


Asunto(s)
Bombyx/fisiología , Interacciones Huésped-Parásitos , Plantas/metabolismo , Plantas/parasitología , Receptores de Superficie Celular/metabolismo , Metabolismo Secundario , Gusto/fisiología , Animales , Bombyx/efectos de los fármacos , Bombyx/genética , Calcio/metabolismo , Cumarinas/farmacología , Conducta Alimentaria , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Proteínas de Insectos/metabolismo , Especificidad de Órganos , Metabolismo Secundario/efectos de los fármacos , Gusto/efectos de los fármacos
3.
J Insect Physiol ; 132: 104263, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34052304

RESUMEN

Most lepidopteran insect larvae exhibit stepwise feeding behaviors, such as palpation using the maxillary palps (MPs) followed by test biting and persistent biting. However, the purpose of palpation has been unclear. In particular, nothing is known about the neurons in the MP and their mode of recognition of undesired plants, although such neurons have been suggested to exist. In this study, we used larvae of the stenophagous insect Bombyx mori and compared the roles of palpation and test biting in the selection of feeding behavior. When the larvae were given non-host plant leaves, they did not initiate test biting, indicating that non-host plant leaves were recognized via palpation without biting, and that this behavior resulted in a lack of persistent biting, as the leaves were judged non-suitable for consumption. Surface extracts of inedible leaves significantly suppressed test biting of mulberry leaves, a host plant of B. mori, suggesting that secondary metabolites on the leaf surface of inedible leaves function as test biting suppressors, even when another conditions are suitable for test biting. The allelochemical coumarin, which is found in the inedible leaves of cherry, Cerasus speciosa, significantly suppressed test biting of mulberry leaves, suggesting that coumarin is a possible deterrent to the eating of cherry leaves. Using the electrophysiological method of tip recording and a leaf-surface extract as the test material, leaf-surface compound-responsive neurons were identified in the MP. In addition, several neurons that respond to coumarin in the attomolar range were identified, suggesting that the larvae use ultrasensitive neurons in the MP to recognize inedible leaves. In the HEK293T cell heterologous expression system, the B. mori gustatory receptors BmGr53 and BmGr19, which were previously found to be expressed in the MP and to respond to coumarin in the attomolar range, responded to a leaf-surface extract of C. speciosa, suggesting that these receptors may be present on the inedible-leaf-recognizing neurons of the MP. These findings suggest that ultrasensitive plant secondary metabolite-recognizing neurons in the MP allow for the recognition of non-host plants via palpation without risking damage caused by ingesting harmful allelochemicals.


Asunto(s)
Bombyx , Conducta Alimentaria/fisiología , Feromonas , Percepción del Gusto/fisiología , Animales , Bombyx/metabolismo , Bombyx/fisiología , Células Quimiorreceptoras/metabolismo , Cumarinas/farmacología , Células HEK293 , Humanos , Larva/metabolismo , Larva/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Feromonas/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Receptores de Superficie Celular/efectos de los fármacos , Gusto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA