Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microb Cell Fact ; 15: 25, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26829922

RESUMEN

BACKGROUND: With the increased number of cholera outbreaks and emergence of multidrug resistance in Vibrio cholerae strains it has become necessary for the scientific community to devise and develop novel therapeutic approaches against cholera. Recent studies have indicated plausibility of therapeutic application of metal nano-materials. Among these, silver nanoparticles (AgNPs) have emerged as a potential antimicrobial agent to combat infectious diseases. At present nanoparticles are mostly produced using physical or chemical techniques which are toxic and hazardous. Thus exploitation of microbial systems could be a green eco-friendly approach for the synthesis of nanoparticles having similar or even better antimicrobial activity and biocompatibility. Hence, it would be worth to explore the possibility of utilization of microbial silver nanoparticles and their conjugates as potential novel therapeutic agent against infectious diseases like cholera. RESULTS: The present study attempted utilization of Ochrobactrum rhizosphaerae for the production of AgNPs and focused on investigating their role as antimicrobial agents against cholera. Later the exopolymer, purified from the culture supernatant, was used for the synthesis of spherical shaped AgNPs of around 10 nm size. Further the exopolymer was characterized as glycolipoprotein (GLP). Antibacterial activity of the novel GLP-AgNPs conjugate was evaluated by minimum inhibitory concentration, XTT reduction assay, scanning electron microscopy (SEM) and growth curve analysis. SEM studies revealed that AgNPs treatment resulted in intracellular contents leakage and cell lysis. CONCLUSION: The potential of microbially synthesized nanoparticles, as novel therapeutic agents, is still relatively less explored. In fact, the present study first time demonstrated that a glycolipoprotein secreted by the O. rhizosphaerae strain can be exploited for production of AgNPs which can further be employed to treat infectious diseases. Although this type of polymer has been obtained earlier from marine fungi and bacteria, none of these reports have studied the role of this polymer in AgNPs synthesis and its application in cholera therapy. Interestingly, the microbial GLP-capped AgNPs exhibited antibacterial activity against V. cholerae comparable to ciprofloxacin. Thus the present study may open up new avenues for development of novel therapeutic agents for treatment of infectious diseases. Graphical abstract Development of novel therapeutic agents for treatment of cholera.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cólera/tratamiento farmacológico , Glicoproteínas/farmacología , Lipoproteínas/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Antioxidantes/farmacología , Biopolímeros/aislamiento & purificación , Biopolímeros/farmacología , Compuestos de Bifenilo/química , Dispersión Dinámica de Luz , Depuradores de Radicales Libres/química , Glicoproteínas/aislamiento & purificación , Lipoproteínas/aislamiento & purificación , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Filogenia , Picratos/química , ARN Ribosómico 16S/genética , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie , Temperatura , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/ultraestructura
2.
Artículo en Inglés | MEDLINE | ID: mdl-38275062

RESUMEN

BACKGROUND: Recognizing the potential of the immune system, immunotherapies have brought about a revolution in the treatment of cancer. Low tumour mutational burden and strong immunosuppression in the peritoneal tumor microenvironment (TME) lead to poor outcomes of immune checkpoint inhibition (ICI) and CART cell therapy in ovarian cancer. Alternative immunotherapeutic strategies are of utmost importance to achieve sound clinical success. INTRODUCTION: The development of peptide vaccines based on tumor-associated antigens (TAAs) for ovarian cancer cells can be a potential target to provoke an anti-tumor immune response and subsequent clearance of tumour cells. The purpose of this in-silico study was to find potential epitopes for a multi-epitope vaccine construct using the immunopeptidomics landscape of ovarian carcinoma. METHODS: The four TAAs (MUC16, IDO1, FOLR1, and DDX5) were selected as potential epitopes for B-cells, helper T-lymphocytes (HTLs), and cytotoxic T-lymphocytes (CTLs) predicted on the basis of antigenic, allergenic, and toxic properties. These epitopes were combined with suitable linkers and an adjuvant to form a multi-epitope construct. RESULTS: Four HTLs, 13 CTLs, and 6 potential B-cell epitopes were predicted from the TAAs. The designed multi-epitope construct was potentially immunogenic, non-toxic, and nonallergenic. Physicochemical properties and higher-order structural analyses of the final construct revealed a potential vaccine candidate. CONCLUSION: The designed vaccine construct has the potential to trigger both humoral and cellular immune responses and may be employed as a therapeutic immunization candidate for ovarian malignancies. However, further in vitro and animal experimentation is required to establish the efficacy of the vaccine candidate.

3.
Microbiol Spectr ; 11(6): e0017523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37811987

RESUMEN

IMPORTANCE: Vibrio cholerae, a Gram-negative bacterium, is the causative agent of a fatal disease, "cholera." Prevention of cholera outbreak is possible by eliminating the bacteria from the environment. However, antimicrobial resistance developed in microorganisms has posed a threat and challenges to its treatment. Application of nanoparticles is a useful and effective option for the elimination of such microorganisms. Metal-based nanopaticles exhibit microbial toxicity through non-specific mechanisms. To prevent resistance development and increase antibacterial efficiency, rational designing of nanoparticles is required. Thus, knowledge on the exact mechanism of action of nanoparticles is highly essential. In this study, we explore the possible mechanisms of antibacterial activity of AuNPs-SL against V. cholerae. We show that the interaction of AuNPs-SL with V. cholerae enhances ROS production and membrane depolarization, change in permeability, and leakage of intracellular content. This action leads to the depletion of cellular ATP level, DNA damage, and subsequent cell death.


Asunto(s)
Cólera , Nanopartículas del Metal , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/microbiología , Oro/farmacología , Oro/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Muerte Celular
4.
Front Immunol ; 14: 1209513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849762

RESUMEN

The SARS-CoV-2 omicron variants keep accumulating a large number of mutations in the spike (S) protein, which contributes to greater transmissibility and a rapid rise to dominance within populations. The identification of mutations and their affinity to the cellular angiotensin-converting enzyme-2 (ACE-2) receptor and immune evasion in the Delhi NCR region was under-acknowledged. The study identifies some mutations (Y505 reversion, G339H, and R346T/N) in genomes from Delhi, India, and their probable implications for altering the immune response and binding affinity for ACE-2. The spike mutations have influenced the neutralizing activity of antibodies against the omicron variant, which shows partial immune escape. However, researchers are currently exploring various mitigation strategies to tackle the potential decline in efficacy or effectiveness against existing and future variants of SARS-CoV-2. These strategies include modifying vaccines to target specific variants, such as the omicron variant, developing multivalent vaccine formulations, and exploring alternative delivery methods. To address this, it is also necessary to understand the impact of these mutations from a different perspective, especially in terms of alterations in antigenic determinants. In this study, we have done whole genome sequencing (WGS) of SARS-CoV-2 in COVID-19 samples from Delhi, NCR, and analyzed the spike's mutation with an emphasis on antigenic alterations. The impact of mutation in terms of epitope formation, loss/gain of efficiency, and interaction of epitopes with antibodies has been studied. Some of the mutations or variant genomes seem to be the progenitors of the upcoming variants in India. Our analyses suggested that weakening interactions with antibodies may lead to immune resistance in the circulating genomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/genética , Anticuerpos , Epítopos , India/epidemiología , Glicoproteínas
5.
Sci Rep ; 10(1): 1463, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996706

RESUMEN

Microbes develop several strategies to survive in the adverse condition such as biofilm formation, attaining non-dividing state, altering drug target or drug, thereby increases the burden of drug dosage. To combat these issues, nanoparticles have shown an alternative approach for new treatment strategy but synthesis via chemical synthetic route limits their application in biomedical field. Here, green method for the synthesis of gold nanoparticles using sophorolipid (SL) is discussed that is characterized by various techniques. Initially, the antimicrobial activity was checked against metabolically active state of microbes; Gram-positive Staphylococcus aureus and Gram-negative Vibrio cholerae using XTT assay and growth kinetics assay. Results suggested higher efficacy of nanoparticles for Gram-negative, therefore further analyzed against Escherichia coli that confirmed its potency for the same. AuNPs-SL also signifies its efficiency at least metabolically active state; non dividing cells and biofilm of these microbes. Induced morphological changes were studied by SEM that revealed AuNPs-SL led to disruption of cell membrane and leakage of intracellular fluid to the surroundings. Inhibition of respiratory enzymes activity also plays a crucial role in bactericidal action as indicated by LDH assay. Synergy of AuNPs-SL with different antibiotics was also analyzed using checkerboard assay. These results suggested the possible use of AuNPs-SL as an antimicrobial therapy in the field of nanomedicine.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Membrana Celular/patología , Cólera/tratamiento farmacológico , Tecnología Química Verde/métodos , Ácidos Oléicos/farmacología , Vibrio cholerae/fisiología , Procesos de Crecimiento Celular , Oro , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA