Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551536

RESUMEN

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Asunto(s)
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusitis , Humanos , Asma/sangre , Asma/fisiopatología , Asma/inmunología , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Femenino , Masculino , Galectinas/sangre , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Sinusitis/sangre , Sinusitis/inmunología , Rinitis/sangre , Rinitis/inmunología , Rinitis/fisiopatología , Pólipos Nasales/inmunología , Pólipos Nasales/sangre , Eosinófilos/inmunología , Anciano , Enfermedad Crónica
2.
Scand J Immunol ; 100(1): e13372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654426

RESUMEN

Chronic granulomatous disease (CGD) is a primary immunodeficiency disease caused by molecular defects in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. p67phox-CGD is an autosomal recessive CGD, which is caused by a defect in the cytosolic components of NADPH oxidase, p67phox, encoded by NCF2. We previously established a flow cytometric analysis for p67phox expression, which allows accurate assessment of residual protein expression in p67phox-CGD. We evaluated the correlation between oxidase function and p67phox expression, and assessed the relevancy to genotypes and clinical phenotypes in 11 patients with p67phox-CGD. Reactive oxygen species (ROS) production by granulocytes was evaluated using dihydrorhodamine-1,2,3 (DHR) assays. p67phox expression was evaluated in the monocyte population. DHR activity and p67phox expression were significantly correlated (r = 0.718, p < 0.0162). Additionally, DHR activity and p67phox expression were significantly higher in patients carrying one missense variant in combination with one nonsense or frameshift variant in the NCF2 gene than in patients with only null variants. The available clinical parameters of our patients (i.e., age at disease onset, number of infectious episodes, and each infection complication) were not linked with DHR activity or p67phox expression levels. In summary, our flow cytometric analysis revealed a significant correlation between residual ROS production and p67phox expression. More deleterious NCF2 genotypes were associated with lower levels of DHR activity and p67phox expression. DHR assays and protein expression analysis by using flow cytometry may be relevant strategies for predicting the genotypes of p67phox-CGD.


Asunto(s)
Citometría de Flujo , Enfermedad Granulomatosa Crónica , NADPH Oxidasas , Fosfoproteínas , Especies Reactivas de Oxígeno , Humanos , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Citometría de Flujo/métodos , Masculino , Femenino , Niño , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Preescolar , Lactante , Adolescente , Genotipo , Granulocitos/metabolismo , Adulto , Monocitos/metabolismo
3.
Sci Rep ; 14(1): 17917, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095551

RESUMEN

Chimeric antigen receptor (CAR) T cells are effective against hematological cancers, but are less effective against solid tumors such as non-small cell lung cancer (NSCLC). One of the reasons is that only a few cell surface targets specific for NSCLC cells have been identified. Here, we report that CD98 heavy chain (hc) protein is overexpressed on the surface of NSCLC cells and is a potential target for CAR T cells against NSCLC. Screening of over 10,000 mAb clones raised against NSCLC cell lines showed that mAb H2A011 bound to NSCLC cells but not normal lung epithelial cells. H2A011 recognized CD98hc. Although CAR T cells derived from H2A011 could not be established presumably due to the high level of H2A011 reactivity in activated T cells, those derived from the anti-CD98hc mAb R8H283, which had been shown to lack reactivity with CD98hc glycoforms expressed on normal hematopoietic cells and some normal tissues, were successfully developed. R8H283 specifically reacted with NSCLC cells in six of 15 patients. R8H283-derived CAR T cells exerted significant anti-tumor effects in a xenograft NSCLC model in vivo. These results suggest that R8H283 CAR T cells may become a new therapeutic tool for NSCLC, although careful testing for off-tumor reactivity should be performed in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia Adoptiva , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Anticuerpos Monoclonales/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Femenino
4.
Cell Genom ; 4(8): 100625, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084228

RESUMEN

Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.


Asunto(s)
Análisis de la Célula Individual , Inactivación del Cromosoma X , Inactivación del Cromosoma X/genética , Humanos , Análisis de la Célula Individual/métodos , Femenino , Linfocitos/metabolismo , Masculino , Estudio de Asociación del Genoma Completo , Animales , Células Mieloides/metabolismo , Ratones , Análisis de Secuencia de ARN/métodos , Especificidad de Órganos , Genes Ligados a X/genética
5.
JCI Insight ; 9(11)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855869

RESUMEN

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Vesículas Extracelulares , Fibrosis Pulmonar , Proteína B Asociada a Surfactante Pulmonar , Vesículas Extracelulares/metabolismo , Humanos , Animales , Biomarcadores/sangre , Ratones , Masculino , Femenino , Fibrosis Pulmonar/sangre , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteína B Asociada a Surfactante Pulmonar/sangre , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Persona de Mediana Edad , Anciano , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/metabolismo , Pulmón/patología , Pulmón/metabolismo , Proteómica/métodos , Modelos Animales de Enfermedad , Pronóstico , Precursores de Proteínas , Proteínas Asociadas a Surfactante Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA