Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet A ; 185(4): 1113-1119, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33506645

RESUMEN

Cortical dysplasia, complex, with other brain malformations 3 (CDCBM3) is a rare autosomal dominant syndrome caused by Kinesin family Member 2A (KIF2A) gene mutation. Patients with CDCBM3 exhibit posterior dominant agyria/pachygyria with severe motor dysfunction. Here, we report an 8-year-old boy with CDCBM3 showing a typical, but relatively mild, clinical presentation of CDCBM3 features. Whole-exome sequencing identified a heterozygous mutation of NM_001098511.2:c.1298C>A [p.(Ser433Tyr)]. To our knowledge, the mutation has never been reported previously. The variant was located distal to the nucleotide binding domain (NBD), in which previously-reported variants in CDCBM3 patients have been located. The computational structural analysis showed the p.433 forms the pocket with NBD. Variants in KIF2A have been reported in the NBD for CDCBM3, in the kinesin motor 3 domain, but not in the NBD in epilepsy, and outside of the kinesin motor domain in autism spectrum syndrome, respectively. Our patient has a variant, that is not in the NBD but at the pocket with the NBD, resulting in a clinical features of CDCBM3 with mild symptoms. The clinical findings of patients with KIF2A variants appear restricted to the central nervous system and facial anomalies. We can call this spectrum "KIF2A syndrome" with variable severity.


Asunto(s)
Epilepsia/genética , Cinesinas/genética , Malformaciones del Desarrollo Cortical/genética , Proteínas Asociadas a Microtúbulos/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Heterocigoto , Humanos , Cinesinas/ultraestructura , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/patología , Proteínas Asociadas a Microtúbulos/ultraestructura , Mutación Missense/genética , Conformación Proteica , Tubulina (Proteína)/genética , Secuenciación del Exoma
2.
BMC Neurol ; 21(1): 439, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753439

RESUMEN

BACKGROUND: Spastic paraplegia type 4 (SPG4) is caused by mutations in the SPAST gene, is the most common form of autosomal-dominant pure hereditary spastic paraplegias (HSP), and is rarely associated with a complicated form that includes ataxia, epilepsy, and cognitive decline. To date, the genotype-phenotype correlation has not been substantially established for SPAST mutations. CASE PRESENTATION: We present a Japanese patient with infantile-onset HSP and a complex form with coexisting ataxia and epilepsy. The sequencing of SPAST revealed a de novo c.1496G > A (p.R499H) mutation. A review of the literature revealed 16 additional patients with p.R499H mutations in SPAST associated with an early-onset complicated form of HSP. We found that the complicated phenotype of patients with p.Arg499His mutations could be mainly divided into three subgroups: (1) infantile-onset ascending hereditary spastic paralysis, (2) HSP with severe dystonia, and (3) HSP with cognitive impairment. Moreover, the c.1496G > A mutation in SPAST may occur as a de novo variant at noticeably high rates. CONCLUSION: We reviewed the clinical features of the patients reported in the literature with the p.Arg499His mutation in SPAST and described the case of a Japanese patient with this mutation presenting a new complicated form. Accumulating evidence suggests a possible association between infantile-onset complicated HSP and the p.Arg499His mutation in SPAST. The findings of this study may expand the clinical spectrum of the p.Arg499His mutation in SPAST and provide an opportunity to further study the genotype-phenotype correlation of SPG4.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Mutación/genética , Paraplejía/genética , Fenotipo , Paraplejía Espástica Hereditaria/genética , Espastina/genética
4.
Pediatr Neurol ; 113: 33-41, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32980745

RESUMEN

BACKGROUND: We aimed to demonstrate the biochemical characteristics of vitamin B6-dependent epilepsy, with a particular focus on pyridoxal 5'-phosphate and pyridoxal in the cerebrospinal fluid. METHODS: Using our laboratory database, we identified patients with vitamin B6-dependent epilepsy and extracted their data on the concentrations of pyridoxal 5'-phosphate, pyridoxal, pipecolic acid, α-aminoadipic semialdehyde, and monoamine neurotransmitters. We compared the biochemical characteristics of these patients with those of other epilepsy patients with low pyridoxal 5'-phosphate concentrations. RESULTS: We identified seven patients with pyridoxine-dependent epilepsy caused by an ALDH7A1 gene abnormality, two patients with pyridoxal 5'-phosphate homeostasis protein deficiency, and 28 patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Cerebrospinal fluid pyridoxal and pyridoxal 5'-phosphate concentrations were low in patients with vitamin B6-dependent epilepsy but cerebrospinal fluid pyridoxal concentrations were not reduced in most patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Increase in 3-O-methyldopa and 5-hydroxytryptophan was demonstrated in some patients with vitamin B6-dependent epilepsy, suggestive of pyridoxal 5'-phosphate deficiency in the brain. CONCLUSIONS: Low cerebrospinal fluid pyridoxal concentrations may be a better indicator of pyridoxal 5'-phosphate deficiency in the brain in vitamin B6-dependent epilepsy than low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. This finding is especially helpful in individuals with suspected pyridoxal 5'-phosphate homeostasis protein deficiency, which does not have known biomarkers.


Asunto(s)
Epilepsia/metabolismo , Fosfato de Piridoxal/líquido cefalorraquídeo , Piridoxal/líquido cefalorraquídeo , 5-Hidroxitriptófano/metabolismo , Adolescente , Niño , Preescolar , Epilepsia/diagnóstico , Epilepsia/etiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ácidos Pipecólicos/metabolismo , Estudios Retrospectivos , Tirosina/análogos & derivados , Tirosina/metabolismo , Vitamina B 6 , Adulto Joven
5.
Brain Dev ; 41(2): 150-157, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30301590

RESUMEN

OBJECTIVES: Defects in DNA damage responses or repair mechanisms cause numerous rare inherited diseases, referred to as "DNA-repair defects" or "DNA damage deficiency", characterized by neurodegeneration, immunodeficiency, and/or cancer predisposition. Early accurate diagnosis is important for informing appropriate clinical management; however, diagnosis is frequently challenging and can be delayed, due to phenotypic heterogeneity. Comprehensive genomic analysis could overcome this disadvantage. The objectives of this study were to determine the prevalence of ataxia-telangiectasia (A-T) and A-T-like DNA-repair defects in Japan and to determine the utility of comprehensive genetic testing of presumptively diagnosed patients in facilitating early diagnosis. METHODS: A nationwide survey of diseases presumably caused by DNA-repair defects, including A-T, was performed. Additionally, comprehensive next-generation sequencing (NGS) analysis, targeting known disease-causing genes, was conducted. RESULTS: Sixty-three patients with A-T or other diseases with characteristics of DNA-repair defects were identified. Thirty-four patients were genetically or clinically definitively diagnosed with A-T (n = 22) or other DNA-repair defects (n = 12). Genetic analysis of 17 presumptively diagnosed patients revealed one case of ataxia with oculomotor apraxia type 1 (AOA1); one ataxia with oculomotor apraxia type 2 (AOA2); two types of autosomal dominant spinocerebellar ataxia (SCA5, SCA29); two CACNA1A-related ataxias; one microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR); and one autosomal dominant KIF1A-related disorder with intellectual deficit, cerebellar atrophy, spastic paraparesis, and optic nerve atrophy. The diagnostic yield was 58.8%. CONCLUSION: Comprehensive genetic analysis of targeted known disease-causing genes by NGS is a powerful diagnostic tool for subjects with indistinguishable neurological phenotypes resembling DNA-repair defects.


Asunto(s)
Ataxia Telangiectasia/epidemiología , Ataxia Telangiectasia/genética , Trastornos por Deficiencias en la Reparación del ADN/epidemiología , Trastornos por Deficiencias en la Reparación del ADN/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Ataxia Telangiectasia/diagnóstico , Niño , Preescolar , Trastornos por Deficiencias en la Reparación del ADN/diagnóstico , Diagnóstico Precoz , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Epilepsia Open ; 3(4): 495-502, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30525118

RESUMEN

OBJECTIVE: Vitamin B6-dependent epilepsies are treatable disorders caused by variants in several genes, such as ALDH7A1,PNPO, and others. Recently, biallelic variants in PLPBP, formerly known as PROSC, were identified as a novel cause of vitamin B6-dependent epilepsies. Our objective was to further delineate the phenotype of PLPBP mutation. METHODS: We identified 4 unrelated patients harboring a total of 4 variants in PLPBP, including 3 novel variants, in a cohort of 700 patients with developmental and epileptic encephalopathies. Clinical information in each case was collected. RESULTS: Each patient had a different clinical course of epilepsy, with seizure onset from the first day of life to 3 months of age. Generalized tonic-clonic seizures were commonly noted. Myoclonic seizures or focal seizures were also observed in 2 patients. Interictal electroencephalography showed variable findings, such as suppression burst, focal or multifocal discharges, and diffuse slow activity. Unlike previous reports, all the patients had some degree of intellectual disability, although some of them had received early treatment with vitamin B6, suggesting that different mutation types influence the severity and outcome of the seizures. SIGNIFICANCE: PLPBP variants should be regarded as among the causative genes of developmental and epileptic encephalopathy, even when it occurs after the neonatal period. Early diagnosis and proper treatment with pyridoxine or pyridoxal phosphate is essential to improve the neurologic prognosis in neonates or young children with poorly controlled seizures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA