Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684513

RESUMEN

The aim of this work was to develop and validate a sensitive and robust method of liquid chromatography coupled with tandem mass spectrometry to quantitate ST-246 (tecovirimat) in plasma using an internal standard (2-hydroxy-N-{3,5-dioxo-4-azatetracyclo [5.3.2.02.6.08.10]dodec-11-en-4-yl}-5-methylbenzamide). The method was validated in negative multiple reaction monitoring mode following recommendations of the European Medicines Agency for the validation of bioanalytical methods. The calibration curve for the analyte was linear in the 10−2500 ng/mL range with determination coefficient R2 > 0.99. Intra- and inter-day accuracy and precision for three concentrations of quality control were <15%. Testing of long-term stability of ST-246 (tecovirimat) in plasma showed no degradation at −20 °C for at least 3 months. The method was applied to a clinical assay of a new antipoxvirus compound, NIOCH-14. Thus, the proposed method is suitable for therapeutic drug monitoring of ST-246 (tecovirimat) itself and of NIOCH-14 as its metabolic precursor.


Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Benzamidas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Humanos , Isoindoles , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
2.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897931

RESUMEN

A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (-)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.


Asunto(s)
Antivirales , Alcanfor , Antivirales/farmacología , Alcanfor/farmacología , Relación Estructura-Actividad , Tiazoles/farmacología
3.
Arch Pharm (Weinheim) ; 354(6): e2100038, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33605479

RESUMEN

Although the World Health Organisation had announced that smallpox was eradicated over 40 years ago, the disease and other related pathogenic poxviruses such as monkeypox remain potential bioterrorist weapons and could also re-emerge as natural infections. We have previously reported (+)-camphor and (-)-borneol derivatives with an antiviral activity against the vaccinia virus. This virus is similar to the variola virus (VARV), the causative agent of smallpox, but can be studied at BSL-2 facilities. In the present study, we evaluated the antiviral activity of the most potent compounds against VARV, cowpox virus, and ectromelia virus (ECTV). Among the compounds tested, 4-bromo-N'-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide 18 is the most effective compound against various orthopoxviruses, including VARV, with an EC50 value of 13.9 µM and a selectivity index of 206. Also, (+)-camphor thiosemicarbazone 9 was found to be active against VARV and ECTV.


Asunto(s)
Canfanos , Alcanfor , Isoindoles , Orthopoxvirus/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Canfanos/síntesis química , Canfanos/química , Canfanos/farmacología , Alcanfor/análogos & derivados , Alcanfor/química , Alcanfor/farmacología , Células Cultivadas , Humanos , Isoindoles/síntesis química , Isoindoles/química , Isoindoles/farmacología , Orthopoxvirus/clasificación , Orthopoxvirus/patogenicidad , Orthopoxvirus/fisiología , Infecciones por Poxviridae/tratamiento farmacológico , Infecciones por Poxviridae/virología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología
4.
Molecules ; 26(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924393

RESUMEN

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Asunto(s)
Antivirales/síntesis química , Monoterpenos Bicíclicos/química , Antivirales/química , Ebolavirus/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Orthomyxoviridae/efectos de los fármacos , Estructura Secundaria de Proteína , Pirrolidinas/química
5.
Chem Biodivers ; 15(9): e1800153, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956885

RESUMEN

A series of the bornyl ester/amide derivatives with N-containing heterocycles were designed and synthesized as vaccinia virus (VV) inhibitors. Bioassay results showed that among the designed compounds, derivatives 6, 13, 14, 34, 36 and 37 showed the best inhibitory activity against VV with the IC50 values of 12.9, 17.9, 3.4, 2.5, 12.5 and 7.5 µm, respectively, and good cytotoxicity. The primary structure-activity relationship (SAR) study suggested that the combination of a saturated N-heterocycle, such as morpholine or 4-methylpiperidine, and a 1,7,7-trimethylbicyclo[2.2.1]heptane scaffold was favorable for antiviral activity.


Asunto(s)
Abies/química , Antivirales/farmacología , Canfanos/farmacología , Alcanfor/química , Descubrimiento de Drogas , Virus Vaccinia/efectos de los fármacos , Antivirales/química , Bioensayo , Canfanos/química , Canfanos/aislamiento & purificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Concentración 50 Inhibidora , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Estereoisomerismo , Relación Estructura-Actividad
6.
J Gen Virol ; 97(5): 1229-1239, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26861777

RESUMEN

Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacología , Mpox/tratamiento farmacológico , Viruela/tratamiento farmacológico , Animales , Benzamidas/síntesis química , Benzamidas/farmacología , Chlorocebus aethiops , Femenino , Isoindoles/síntesis química , Isoindoles/farmacología , Masculino , Marmota , Ratones , Ratones Endogámicos ICR , Ratones SCID , Estructura Molecular , Monkeypox virus , Virus de la Viruela , Células Vero
7.
J Gen Virol ; 96(9): 2832-2843, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26067292

RESUMEN

The possibility of using immunocompetent ICR mice and immunodeficient SCID mice as model animals for smallpox to assess antiviral drug efficacy was investigated. Clinical signs of the disease did not appear following intranasal (i.n.) challenge of mice with strain Ind-3a of variola virus (VARV), even when using the highest possible dose of the virus (5.2 log10 p.f.u.). The 50 % infective doses (ID50) of VARV, estimated by the virus presence or absence in the lungs 3 and 4 days post-infection, were 2.7 ± 0.4 log10 p.f.u. for ICR mice and 3.5 ± 0.7 log10 p.f.u. for SCID mice. After i.n. challenge of ICR and SCID mice with VARV 30 and 50 ID50, respectively, steady reproduction of the virus occurred only in the respiratory tract (lungs and nose). Pathological inflammatory destructive changes were revealed in the respiratory tract and the primary target cells for VARV (macrophages and epithelial cells) in mice, similar to those in humans and cynomolgus macaques. The use of mice to assess antiviral efficacies of NIOCH-14 and ST-246 demonstrated the compliance of results with those described in scientific literature, which opens up the prospect of their use as an animal model for smallpox to develop anti-smallpox drugs intended for humans.


Asunto(s)
Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Evaluación de Medicamentos/métodos , Viruela/tratamiento farmacológico , Virus de la Viruela/efectos de los fármacos , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Ratones SCID , Viruela/patología , Viruela/virología , Bazo/patología , Bazo/virología , Virus de la Viruela/fisiología
8.
Med Chem ; 19(5): 468-477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36437720

RESUMEN

BACKGROUND: In 1980, smallpox became the first viral disease eradicated through vaccination. After the termination of the Smallpox Eradication Program, the global immunization of the population also ceased. Now, most people do not have any immunity against infections caused by orthopoxviruses. Emerging cases of zoonotic orthopox infections transferring to humans inspire the search for new small organic molecules possessing antiviral activity against orthopoxviruses. OBJECTIVE: Here, we present the synthesis and evaluation of antiviral activity against one of the orthopoxviruses, i.e., Vaccinia virus, of hybrid structures containing 1-hydroxyimidazole and benzopyranone moieties. METHODS: Novel 2-(3-coumarinyl)-1-hydroxyimidazoles were synthesized. Their prototropic tautomerism was considered using 1H NMR spectroscopy. Antiviral activity of both new 2-(3-coumarinyl)- 1-hydroxyimidazoles and previously described 2-(3-chromenyl)-1-hydroxyimidazoles against Vaccinia virus was evaluated in Vero cell culture. RESULTS: Newly synthesized 2-(3-coumarinyl)-1-hydroxyimidazoles existed in CDCl3 as a mixture of prototropic tautomers (N-hydroxyimidazole and imidazole N-oxide), transition to DMSO-d6 resulting in the prevalence of N-oxide tautomer. Evaluation of cytotoxicity and antiviral activity against Vaccinia virus was performed in Vero cell culture. Compounds possessing high antiviral activity were present in both series. It was demonstrated that the structure of heterocyclic substituent in position 2 of imidazole impacted the cytotoxicity of substances under consideration. Thus, molecules containing coumarin moiety exhibited lower toxicity than similarly substituted 2-(3-chromenyl)-1- hydroxyimidazoles. CONCLUSION: Perspective virus inhibiting compounds possessing antiviral activity against Vaccinia virus were revealed in the series of 2-(3-coumarinyl)-1-hydroxyimidazoles.


Asunto(s)
Orthopoxvirus , Viruela , Animales , Chlorocebus aethiops , Humanos , Virus Vaccinia , Antivirales/farmacología , Antivirales/química , Viruela/tratamiento farmacológico , Viruela/prevención & control , Células Vero
9.
Viruses ; 15(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680245

RESUMEN

BACKGROUND: Since most of the modern human population has no anti-smallpox immunity, it is extremely important to develop and implement effective drugs for the treatment of smallpox and other orthopoxvirus infections. The objective of this study is to determine the main characteristics of the chemical substance NIOCH-14 and its safety and bioavailability in the body of laboratory animals. METHODS: The safety of NIOCH-14 upon single- or multiple-dose intragastric administration was assessed according to its effect on the main hematological and pathomorphological parameters of laboratory mice and rats. In order to evaluate the pharmacokinetic parameters of NIOCH-14 administered orally, a concentration of ST-246, the active metabolite of NIOCH-14, in mouse blood and organs was determined by tandem mass spectrometry and liquid chromatography. RESULTS: The intragastric administration of NIOCH-14 at a dose of 5 g/kg body weight caused neither death nor signs of intoxication in mice. The intragastric administration of NIOCH-14 to mice and rats at doses of 50 and 150 µg/g body weight either as a single dose or once daily during 30 days did not cause animal death or critical changes in hematological parameters and the microstructure of internal organs. The tissue availability of NIOCH-14 administered orally to the mice at a dose of 50 µg/g body weight, which was calculated according to concentrations of its active metabolite ST-246 for the lungs, liver, kidney, brain, and spleen, was 100, 69.6, 63.3, 26.8 and 20.3%, respectively. The absolute bioavailability of the NIOCH-14 administered orally to mice at a dose of 50 µg/g body weight was 22.8%. CONCLUSION: Along with the previously determined efficacy against orthopoxviruses, including the smallpox virus, the substance NIOCH-14 was shown to be safe and bioavailable in laboratory animal experiments.


Asunto(s)
Viruela , Virus de la Viruela , Humanos , Ratas , Ratones , Animales , Preparaciones Farmacéuticas , Administración Oral , Animales de Laboratorio
10.
Viruses ; 15(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36680072

RESUMEN

Despite the fact that the variola virus is considered eradicated, the search for new small molecules with activity against orthopoxviruses remains an important task, especially in the context of recent outbreaks of monkeypox. As a result of this work, a number of amides of benzoic acids containing an adamantane fragment were obtained. Most of the compounds demonstrated activity against vaccinia virus, with a selectivity index SI = 18,214 for the leader compound 18a. The obtained derivatives also demonstrated activity against murine pox (250 ≤ SI ≤ 6071) and cowpox (125 ≤ SI ≤ 3036). A correlation was obtained between the IC50 meanings and the binding energy to the assumed biological target, the p37 viral protein with R2 = 0.60.


Asunto(s)
Enfermedades Transmisibles , Orthopoxvirus , Virus de la Viruela , Ratones , Animales , Amidas/farmacología , Virus Vaccinia , Replicación Viral
11.
ChemMedChem ; 17(12): e202100771, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35388614

RESUMEN

In this work, a library of (+)-camphor and (-)-fenchone based N-acylhydrazones, amides, and esters, including para-substituted aromatic/hetaromatic/cyclohexane ring was synthesized, with potent orthopoxvirus inhibitors identified among them. Investigations of the structure-activity relationship revealed the significance of the substituent at the para-position of the aromatic ring. Also, the nature of the linker between a hydrophobic moiety and aromatic ring was clarified. Derivatives with p-Cl, p-Br, p-CF3, and p-NO2 substituted aromatic ring and derivatives with cyclohexane ring showed the highest antiviral activity against vaccinia virus, cowpox, and ectromelia virus. The hydrazone and the amide group were more favourable as a linker for antiviral activity than the ester group. Compounds 3 b and 7 e with high antiviral activity were examined using the time-of-addition assay and molecular docking study. The results revealed the tested compounds to inhibit the late processes of the orthopoxvirus replication cycle and the p37 viral protein to be a possible biological target.


Asunto(s)
Orthopoxvirus , Antivirales/química , Canfanos , Alcanfor/farmacología , Ciclohexanos , Simulación del Acoplamiento Molecular , Norbornanos
12.
Eur J Med Chem ; 221: 113485, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33965861

RESUMEN

Currently, smallpox, caused by the variola virus belonging to the poxvirus family, has been completely eradicated according to the WHO. However, other representatives of poxviruses, such as vaccinia virus, cowpox virus, ectromelia virus, monkeypox virus, mousepox virus and others, remain in the natural environment and can infect both animals and humans. The pathogens of animal diseases, belonging to the category with a high epidemic risk, have already caused several outbreaks among humans, and can, in an unfavorable combination of circumstances, cause not only an epidemic, but also a pandemic. Despite the fact that there are protocols for the treatment of poxvirus infections, the targeted design of new drugs will increase their availability and expand the arsenal of antiviral chemotherapeutic agents. One of the potential targets of poxviruses is the p37 protein, which is a tecovirimat target. This protein is relatively small, has no homologs among proteins of humans and other mammals and is necessary for the replication of viral particles, which makes it attractive target for virtual screening. Using the I-TASSER modelling and molecular dynamics refinement the p37 orthopox virus protein model was obtained and its was confirmed by ramachandran plot analysis and superimposition of the model with the template protein with similar function. A virtual library of adamantane containing compounds was generated and a number of potential inhibitors were chosen from virtual library using molecular docking. Several compounds bearing adamantane moiety were synthesized and their biological activity was tested in vitro on vaccinia, cowpox and mousepox viruses. The new compounds inhibiting vaccinia virus replication with IC50 concentrations between 0.133 and 0.515 µM were found as a result of the research. The applied approach can be useful in the search of new inhibitors of orthopox reproduction. The proposed approach may be suitable for the design of new poxvirus inhibitors containing cage structural moiety.


Asunto(s)
Adamantano/farmacología , Antivirales/farmacología , Diseño de Fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Poxviridae/efectos de los fármacos , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Adamantano/síntesis química , Adamantano/química , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/metabolismo
13.
RSC Med Chem ; 11(10): 1185-1195, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479623

RESUMEN

Currently, the spectrum of agents against orthopoxviruses, in particular smallpox, is very narrow. Despite the fact that smallpox is well controlled, there is, for many reasons, a real threat of epidemics associated with this or a similar virus. In order to search for new low molecular weight orthopoxvirus inhibitors, a series of amides combining adamantane and monoterpene moieties were synthesized using 1- and 2-adamantanecarboxylic acids as well as myrtenic, citronellic and camphorsulfonic acids as acid components. The produced compounds exhibited high activity against the vaccinia virus (an enveloped virus belonging to the poxvirus family), which was combined with low cytotoxicity. Some compounds had a selectivity index higher than that of the reference drug cidofovir; the highest SI = 1123 was exhibited by 1-adamantanecarboxylic acid amide containing the (-)-10-amino-2-pinene moiety. The produced compounds demonstrated inhibitory activity against other orthopoxviruses: cowpox virus (SI = 30-406) and ectromelia virus (mousepox virus, SI = 39-707).

14.
Medchemcomm ; 9(10): 1746-1753, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429979

RESUMEN

The Orthopoxvirus genus belongs to the Poxviridae family and includes variola virus (smallpox), cowpox virus, monkeypox virus and vaccinia virus (VV). Smallpox is considered one of the great epidemic disease scourges in human history. It has currently been eradicated; however, it remains a considerable threat as a biowarfare or bioterrorist weapon. The poxvirus, VV, serves as a model virus from which new antiviral therapies against Orthopoxviruses can be identified. Here, a series of nitrogen-sulphur containing heterocycles such as 1,3-thiazolidin-4-one and thiazoles containing a 1,7,7-trimethylbicyclo[2.2.1]heptan scaffold were synthesized and screened for their antiviral activity. The bioassay results showed that the 4b, 4c and 4e thiazoles, which contained a substituted benzene ring, were able to inhibit VV reproduction with IC50 values in the 2.4-3.7 micromolar range whilst exhibiting moderate cytotoxicity. Among the thiazolidin-4-one derivatives, compound 8b, which contained a 4-methylbenzylidene group, displayed good inhibitory activity (IC50 = 9.5 µM) and moderate toxicity.

15.
Medchemcomm ; 9(12): 2072-2082, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746065

RESUMEN

The design and synthesis of a series of novel d-(+)-camphor N-acylhydrazones exhibiting inhibitory activity against vaccinia and influenza viruses are presented. An easy pathway to camphor-based N-acylhydrazones containing in their structure aliphatic, aromatic, and heterocyclic pharmacophore scaffolds has been developed. The conformation and configuration of the synthesized hydrazones were thoroughly characterized by a complete set of spectral characterization techniques, including 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. In vitro screening for activity against vaccinia virus (VV) and influenza H1N1 virus was carried out for the obtained compounds. It was revealed that the derived N-acylhydrazones exhibited significant antiviral activity with a selectivity index >280 against VV for the most promising compound.

16.
Eur J Med Chem ; 158: 214-235, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30218908

RESUMEN

The hepatitis C caused by the hepatitis C virus (HCV) is an acute and/or chronic liver disease ranging in severity from a mild brief ailment to a serious lifelong illness that affects up to 3% of the world population and imposes significant and increasing social, economic, and humanistic burden. Over the past decade, its treatment was revolutionized by the development and introduction into clinical practice of the direct acting antiviral (DAA) agents targeting the non-structural viral proteins NS3/4A, NS5A, and NS5B. However, the current treatment options still have important limitations, thus, the development of new classes of DAAs acting on different viral targets and having better pharmacological profile is highly desirable. The hepatitis C virus p7 viroporin is a relatively small hydrophobic oligomeric viral ion channel that plays a critical role during virus assembly and maturation, making it an attractive and validated target for the development of the cage compound-based inhibitors. Using the homology modeling, molecular dynamics, and molecular docking techniques, we have built a representative set of models of the hepatitis C virus p7 ion channels (Gt1a, Gt1b, Gt1b_L20F, Gt2a, and Gt2b), analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them. For one promising compound, the binding to these targets was additionally confirmed and the binding modes and probable mechanisms of action were clarified by the molecular dynamics simulations. A number of compounds were synthesized, and the tests of their antiviral activity (using the BVDV model) and cytotoxicity demonstrate their potential therapeutic usefulness and encourage further more detailed studies. The proposed approach is also suitable for the design of broad-spectrum ligands interacting with other multiple labile targets including various viroporins.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/síntesis química , Hepacivirus/química , Hepacivirus/metabolismo , Hepatitis C/virología , Humanos , Simulación del Acoplamiento Molecular , Alineación de Secuencia , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Antivir Ther ; 22(4): 345-351, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924780

RESUMEN

BACKGROUND: The influenza A virus accounts for serious annual viral upper respiratory tract infections. It is constantly able to modify its antigenic structure, thus evading host defence mechanisms. Moreover, currently available anti-influenza agents have a rather limited application, emphasizing the further need for new effective treatments. One of them is ergoferon, a drug containing combined polyclonal antibodies - anti-interferon gamma, anti-CD4 receptor and anti-histamine - in released-active form. The purpose of the study was to assess ergoferon antiviral efficacy in mice challenged with the A/Aichi/2/68 (H3N2) influenza virus. METHODS: The virus was inoculated intranasally at a 90% lethal dose. Ergoferon was administered at 0.4 ml/day per os in a preventive and therapeutic regimen - daily for 5 days prior to and for 16 days after the challenge. The reference product, Tamiflu (oseltamivir), was used as a positive control treatment - at 20 mg/kg/day for 5 days after the challenge. Mice in the negative control group received distilled water which had been utilized for test sample preparation; untreated control animals received no treatment. Antiviral efficacy was assessed by an increase in survival rate, average life expectancy and virus titre reduction in the challenged mouse lungs. RESULTS: Survival rate and average life expectancy values were increased significantly in groups treated with ergoferon and Tamiflu, as compared with controls. Lung virus titres were reduced in these groups as observed on days 2 and 4 post-inoculation. CONCLUSIONS: Ergoferon demonstrated antiviral activity by reducing the severity and duration of the major signs of induced influenza infection.


Asunto(s)
Anticuerpos/farmacología , Antivirales/farmacología , Factores Inmunológicos/farmacología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Antígenos CD4/antagonistas & inhibidores , Antígenos CD4/inmunología , Esquema de Medicación , Cálculo de Dosificación de Drogas , Femenino , Histamina/inmunología , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/inmunología , Interferón gamma/antagonistas & inhibidores , Interferón gamma/inmunología , Longevidad/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Análisis de Supervivencia , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA