Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G291-G309, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252699

RESUMEN

Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Carcinoma Hepatocelular/patología , Proglumida/farmacología , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Fibrosis , Células Madre/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Colecistoquinina/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835036

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated deaths worldwide. Treatment with immune checkpoint antibodies has shown promise in advanced HCC, but the response is only 15-20%. We discovered a potential target for the treatment of HCC, the cholecystokinin-B receptor (CCK-BR). This receptor is overexpressed in murine and human HCC and not in normal liver tissue. Mice bearing syngeneic RIL-175 HCC tumors were treated with phosphate buffer saline (PBS; control), proglumide (a CCK-receptor antagonist), an antibody to programmed cell death protein 1 (PD-1Ab), or the combination of proglumide and the PD-1Ab. In vitro, RNA was extracted from untreated or proglumide-treated murine Dt81Hepa1-6 HCC cells and analyzed for expression of fibrosis-associated genes. RNA was also extracted from human HepG2 HCC cells or HepG2 cells treated with proglumide and subjected to RNA sequencing. Results showed that proglumide decreased fibrosis in the tumor microenvironment and increased the number of intratumoral CD8+ T cells in RIL-175 tumors. When proglumide was given in combination with the PD-1Ab, there was a further significant increase in intratumoral CD8+ T cells, improved survival, and alterations in genes regulating tumoral fibrosis and epithelial-to-mesenchymal transition. RNAseq results from human HepG2 HCC cells treated with proglumide showed significant changes in differentially expressed genes involved in tumorigenesis, fibrosis, and the tumor microenvironment. The use of the CCK receptor antagonist may improve efficacy of immune checkpoint antibodies and survival in those with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Proglumida , Receptores de Colecistoquinina , Animales , Ratones , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Colecistoquinina , Fibrosis , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Proglumida/farmacología , Receptores de Colecistoquinina/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/inmunología
3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614194

RESUMEN

Survival from pancreatic cancer is poor because most cancers are diagnosed in the late stages and there are no therapies to prevent the progression of precancerous pancreatic intraepithelial neoplasms (PanINs). Inhibiting mutant KRASG12D, the primary driver mutation in most human pancreatic cancers, has been challenging. The cholecystokinin-B receptor (CCK-BR) is absent in the normal pancreas but becomes expressed in high grade PanIN lesions and is over-expressed in pancreatic cancer making it a prime target for therapy. We developed a biodegradable nanoparticle polyplex (NP) that binds selectively to the CCK-BR on PanINs and pancreatic cancer to deliver gene therapy. PanIN progression was halted and the pancreas extracellular matrix rendered less carcinogenic in P48-Cre/LSL-KrasG12D/+ mice treated with the CCK-BR targeted NP loaded with siRNA to mutant Kras. The targeted NP also slowed proliferation, decreased metastases and improved survival in mice bearing large orthotopic pancreatic tumors. Safety and toxicity studies were performed in immune competent mice after short or long-term exposure and showed no off-target toxicity by histological or biochemical evaluation. Precision therapy with target-specific NPs provides a novel approach to slow progression of advanced pancreatic cancer and also prevents the development of pancreatic cancer in high-risk subjects without toxicity to other tissues.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevención & control , Páncreas/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma in Situ/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163821

RESUMEN

Nonalcoholic steatohepatitis (NASH) is associated with obesity, metabolic syndrome, and dysbiosis of the gut microbiome. Cholecystokinin (CCK) is released by saturated fats and plays an important role in bile acid secretion. CCK receptors are expressed on cholangiocytes, and CCK-B receptor expression increases in the livers of mice with NASH. The farnesoid X receptor (FXR) is involved in bile acid transport and is a target for novel therapeutics for NASH. The aim of this study was to examine the role of proglumide, a CCK receptor inhibitor, in a murine model of NASH and its interaction at FXR. Mice were fed a choline deficient ethionine (CDE) diet to induce NASH. Some CDE-fed mice received proglumide-treated drinking water. Blood was collected and liver tissues were examined histologically. Proglumide's interaction at FXR was evaluated by computer modeling, a luciferase reporter assay, and tissue FXR expression. Stool microbiome was analyzed by RNA-Sequencing. CDE-fed mice developed NASH and the effect was prevented by proglumide. Computer modeling demonstrated specific binding of proglumide to FXR. Proglumide binding in the reporter assay was consistent with a partial agonist at the FXR with a mean binding affinity of 215 nM. FXR expression was significantly decreased in livers of CDE-fed mice compared to control livers, and proglumide restored FXR expression to normal levels. Proglumide therapy altered the microbiome signature by increasing beneficial and decreasing harmful bacteria. These data highlight the potential novel mechanisms by which proglumide therapy may improve NASH through interaction with the FXR and consequent alteration of the gut microbiome.


Asunto(s)
Bacterias/clasificación , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proglumida/administración & dosificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Filogenia , Proglumida/química , Proglumida/farmacología , Receptores Citoplasmáticos y Nucleares/química
5.
Am J Physiol Renal Physiol ; 319(3): F476-F486, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32715758

RESUMEN

miRNAs provide fine tuning of gene expression via inhibition of translation. miR-451 has a modulatory role in cell cycling via downregulation of mechanistic target of rapamycin. We aimed to test whether chronic systemic inhibition of miR-451 would enhance renal fibrosis (associated with deranged autophagy). Adult TallyHo/Jng mice (obese insulin resistant) were randomized to two treatment groups to receive either miR-451 inhibition [via a locked nucleic acid construct] or a similar scrambled locked nucleic acid control for 8 wk. All mice were fed a high-fat diet (60% kcal from fat) ad libitum and humanely euthanized after 12 wk. Kidneys and blood were collected for analysis. Renal expression of miR-451 was sixfold lower in inhibitor-treated mice compared with control mice. miR-451 inhibition increased kidney weight and collagen and glycogen deposition. Blood chemistry revealed significantly higher Na+ and anion gap (relative metabolic acidosis) in inhibitor-treated mice. Western blot analysis and immunohistochemistry of the kidney revealed that the inhibitor increased markers of renal injury and fibrosis, e.g., kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, transforming growth factor-ß, 14-3-3 protein-ζ, mechanistic target of rapamycin, AMP-activated protein kinase-α, calcium-binding protein 39, matrix metallopeptidase-9, and the autophagy receptor sequestosome 1. In contrast, the inhibitor reduced the epithelial cell integrity marker collagen type IV and the autophagy markers microtubule-associated protein 1A/1B light chain 3B and beclin-1. Taken together, these results support a protective role for miR-451 in reducing renal fibrosis by enhancing autophagy in obese mice.


Asunto(s)
Autofagia/fisiología , Riñón/patología , MicroARNs/antagonistas & inhibidores , Animales , Autofagia/efectos de los fármacos , Dieta Alta en Grasa , Fibrosis , Regulación de la Expresión Génica , Resistencia a la Insulina , Enfermedades Renales/etiología , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/inducido químicamente , Péptidos , Distribución Aleatoria , Transducción de Señal
6.
Dig Dis Sci ; 65(1): 189-203, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31297627

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis (NASH) is a common inflammatory liver condition that may lead to cirrhosis and hepatocellular carcinoma (HCC). Risk factors for NASH include a saturated fat diet, altered lipid metabolism, and genetic and epigenetic factors, including microRNAs. Serum levels of cholecystokinin (CCK) are elevated in mice and humans that consume a high-saturated fat diet. CCK receptors (CCK-Rs) have been reported on fibroblasts which when activated can induce fibrosis; however, their role in hepatic fibrosis remains unknown. We hypothesized that elevated levels of CCK acting on the CCK-Rs play a role in the development of NASH and in NASH-associated HCC. METHODS: We performed a NASH Prevention study and Reversal study in mice fed a saturated fat 75% choline-deficient-ethionine-supplemented (CDE) diet for 12 or 18 weeks. In each study, half of the mice received untreated drinking water, while the other half received water supplemented with the CCK-R antagonist proglumide. CCK-R expression was evaluated in mouse liver and murine HCC cells. RESULTS: CCK receptor antagonist treatment not only prevented NASH but also reversed hepatic inflammation, fibrosis, and steatosis and normalized hepatic transaminases after NASH was established. Thirty-five percent of the mice on the CDE diet developed HCC compared with none in the proglumide-treated group. We found that CCK-BR expression was markedly upregulated in mouse CDE liver and HCC cells compared with normal hepatic parenchymal cells, and this expression was epigenetically regulated by microRNA-148a. CONCLUSION: These results support the novel role of CCK receptors in the pathogenesis of NASH and HCC.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Antagonistas de Hormonas/farmacología , Neoplasias Hepáticas/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proglumida/farmacología , Receptor de Colecistoquinina B/antagonistas & inhibidores , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , Epigénesis Genética , Etionina , Femenino , Regulación Neoplásica de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Transducción de Señal
7.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G699-G712, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29927319

RESUMEN

The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high-fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on the growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity. The high-fat diet significantly increased growth and metastasis of pancreatic cancer compared with the control diet, and the stimulatory effect was blocked by the CCK-receptor antagonist proglumide. We then selectively knocked out the CCK receptor on the pancreatic cancer cells using clustered regularly interspaced short palindromic repeats technology and showed that without CCK-receptors, dietary fat was unable to stimulate cancer growth. We next demonstrated that dietary fat failed to influence pancreatic cancer xenograft growth in genetically engineered CCK peptide knockout mice. The tumor-associated fibrosis that is so prevalent in the pancreatic cancer microenvironment was significantly decreased with CCK-receptor antagonist therapy because fibroblasts also have CCK receptors. The CCK-receptor antagonist proglumide also altered tumor metalloprotease expression and increased tumor suppressor genes by a PCR array. Our studies confirm that a diet high in saturated fat promotes growth of pancreatic cancer and the action is mediated by the CCK-receptor pathway. NEW & NOTEWORTHY Diets high in long-chain saturated fats promote growth of pancreatic cancer independent of obesity. The mechanism through which dietary fat promotes cancer is mediated through the cholecystokinin (CCK) receptor pathway. Therapy with a CCK-receptor antagonist altered the tumor microenvironment by reducing fibrosis, increasing cluster of differentiation 8+ lymphocytes, increasing tumor suppressor genes, and thus decreasing metastases. Use of CCK-receptor antagonist therapy with standard chemotherapy for pancreatic cancer may improve response by altering the tumor microenvironment.


Asunto(s)
Grasas de la Dieta/efectos adversos , Neoplasias Pancreáticas/etiología , Receptores de Colecistoquinina/metabolismo , Microambiente Tumoral , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Proglumida/farmacología , Proglumida/uso terapéutico , Receptores de Colecistoquinina/antagonistas & inhibidores , Receptores de Colecistoquinina/genética
8.
Hepatology ; 61(2): 598-612, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307947

RESUMEN

UNLABELLED: ßII-Spectrin (SPTBN1) is an adapter protein for Smad3/Smad4 complex formation during transforming growth factor beta (TGF-ß) signal transduction. Forty percent of SPTBN1(+/-) mice spontaneously develop hepatocellular carcinoma (HCC), and most cases of human HCC have significant reductions in SPTBN1 expression. In this study, we investigated the possible mechanisms by which loss of SPTBN1 may contribute to tumorigenesis. Livers of SPTBN1(+/-) mice, compared to wild-type mouse livers, display a significant increase in epithelial cell adhesion molecule-positive (EpCAM(+)) cells and overall EpCAM expression. Inhibition of SPTBN1 in human HCC cell lines increased the expression of stem cell markers EpCAM, Claudin7, and Oct4, as well as decreased E-cadherin expression and increased expression of vimentin and c-Myc, suggesting reversion of these cells to a less differentiated state. HCC cells with decreased SPTBN1 also demonstrate increased sphere formation, xenograft tumor development, and invasion. Here we investigate possible mechanisms by which SPTBN1 may influence the stem cell traits and aggressive behavior of HCC cell lines. We found that HCC cells with decreased SPTBN1 express much less of the Wnt inhibitor kallistatin and exhibit decreased ß-catenin phosphorylation and increased ß-catenin nuclear localization, indicating Wnt signaling activation. Restoration of kallistatin expression in these cells reversed the observed Wnt activation. CONCLUSION: SPTBN1 expression in human HCC tissues is positively correlated with E-cadherin and kallistatin levels, and decreased SPTBN1 and kallistatin gene expression is associated with decreased relapse-free survival. Our data suggest that loss of SPTBN1 activates Wnt signaling, which promotes acquisition of stem cell-like features, and ultimately contributes to malignant tumor progression.


Asunto(s)
Carcinoma Hepatocelular/etiología , Proteínas Portadoras/metabolismo , Neoplasias Hepáticas/etiología , Proteínas de Microfilamentos/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Serpinas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Cadherinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Moléculas de Adhesión Celular/metabolismo , Molécula de Adhesión Celular Epitelial , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Ratones Desnudos , Vimentina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
9.
Nat Genet ; 37(10): 1099-103, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16142235

RESUMEN

Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10(-9) per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.


Asunto(s)
Embrión de Mamíferos/citología , Genoma Humano/genética , Mutación , Células Madre/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , ADN/genética , ADN/metabolismo , Metilación de ADN , ADN Mitocondrial/química , Humanos , Regiones Promotoras Genéticas
10.
Pharmaceutics ; 16(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794273

RESUMEN

Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We previously showed that the CCK-receptor antagonist called proglumide could decrease inflammation, acinar-ductal metaplasia, and fibrosis in murine models of CP. We hypothesized that proglumide would be safe and diminish pain caused by CP. A Phase 1 open-labeled safety study was performed in subjects with clinical and radiographic evidence of CP with moderate to severe pain. After a 4-week observation period, the subjects were treated with proglumide in 400 mg capsules three times daily (1200 mg per day) by mouth for 12 weeks, and then subjects returned for a safety visit 4 weeks after the discontinuation of the study medication. The results of three pain surveys (Numeric Rating Scale, COMPAT-SF, and NIH PROMIS) showed that the patients had significantly less pain after 12 weeks of proglumide compared to the pre-treatment observation phase. Of the eight subjects in this study, two experienced nausea and diarrhea with proglumide. These side effects resolved in one subject with doses reduced to 800 mg per day. No abnormalities were noted in the blood chemistries. A blood microRNA blood biomarker panel that corresponded to pancreatic inflammation and fibrosis showed significant improvement. We conclude that proglumide is safe and well tolerated in most subjects with CP at a dose of 1200 mg per day. Furthermore, proglumide therapy may have a beneficial effect by decreasing pain associated with CP.

11.
Cancers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37345148

RESUMEN

CCK receptors are expressed on pancreatic cancer epithelial cells, and blockade with receptor antagonists decreases tumor growth. Activated pancreatic stellate cells or myofibroblasts have also been described to express CCK receptors, but the contribution of this novel pathway in fibrosis of the pancreatic cancer microenvironment has not been studied. We examined the effects of the nonselective CCK receptor antagonist proglumide on the activation, proliferation, collagen deposition, differential expression of genes, and migration in both murine and human PSCs. CCK receptor expression was examined using western blot analysis. Collagen production using activated PSCs was analyzed by mass spectroscopy and western blot. Migration of activated PSCs was prevented in vitro by proglumide and the CCK-B receptor antagonist, L365,260, but not by the CCK-A receptor antagonist L365,718. Proglumide effectively decreased the expression of extracellular matrix-associated genes and collagen-associated proteins in both mouse and human PSCs. Components of fibrosis, including hydroxyproline and proline levels, were significantly reduced in PSC treated with proglumide compared to controls. CCK peptide stimulated mouse and human PSC proliferation, and this effect was blocked by proglumide. These investigations demonstrate that targeting the CCK-B receptor signaling pathway with proglumide may alter the plasticity of PSC, rendering them more quiescent and leading to a decrease in fibrosis in the pancreatic cancer microenvironment.

12.
J Cereb Blood Flow Metab ; 43(12): 2130-2143, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37694957

RESUMEN

Few have characterized miRNA expression during the transition from injury to neural repair and secondary neurodegeneration following stroke in humans. We compared expression of 754 miRNAs from plasma samples collected 5, 15, and 30 days post-ischemic stroke from a discovery cohort (n = 55) and 15-days post-ischemic stroke from a validation cohort (n = 48) to healthy control samples (n = 55 and 48 respectively) matched for age, sex, race and cardiovascular comorbidities using qRT-PCR. Eight miRNAs remained significantly altered across all time points in both cohorts including many described in acute stroke. The number of significantly dysregulated miRNAs more than doubled from post-stroke day 5 (19 miRNAs) to days 15 (50 miRNAs) and 30 (57 miRNAs). Twelve brain-enriched miRNAs were significantly altered at one or more time points (decreased expression, stroke versus controls: miR-107; increased expression: miR-99-5p, miR-127-3p, miR-128-3p, miR-181a-3p, miR-181a-5p, miR-382-5p, miR-433-3p, miR-491-5p, miR-495-3p, miR-874-3p, and miR-941). Many brain-enriched miRNAs were associated with apoptosis over the first month post-stroke whereas other miRNAs suggested a transition to synapse regulation and neuronal protection by day 30. These findings suggest that a program of decreased cellular proliferation may last at least 30 days post-stroke, and points to specific miRNAs that could contribute to neural repair in humans.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Humanos , MicroARNs/metabolismo , Accidente Cerebrovascular/genética , Encéfalo/metabolismo , Estudios de Casos y Controles , Perfilación de la Expresión Génica
13.
Pancreas ; 51(9): 1118-1127, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078934

RESUMEN

OBJECTIVES: To analyze whether use of proton pump inhibitors increase the risk for pancreatic cancer in a mouse model and human clinical cohorts. METHODS: p48-Cre/LSL-KrasG12D mice that develop precancerous pancreatic intraepithelial neoplasia (PanINs) were treated with low- or high-dose proton pump inhibitors (PPIs) orally for 1 and 4 months. The mechanism for the cholecystokinin receptor 2 (CCK-2R) activation was investigated in vitro. Two resources were employed to analyze the risk of pancreatic cancer in human subjects with PPI use. RESULTS: Serum gastrin levels were increased 8-fold (P < 0.0001) in mice treated with chronic high-dose PPIs, and this change correlated with an increase (P = 0.02) in PanIN grade and the development of microinvasive cancer. The CCK-2R expression was regulated by microRNA-148a in the p48-Cre/LSL-KrasG12D mice pancreas and in human pancreatic cancer cells in vitro. Proton pump inhibitor consumption in human subjects was correlated with pancreatic cancer risk (odds ratio, 1.54). A validation analysis conducted using the large-scale United Kingdom Biobank database confirmed the correlation (odds ratio, 1.9; P = 0.00761) of pancreatic cancer risk with PPI exposure. CONCLUSIONS: This investigation revealed in both murine models and human subjects, PPI use is correlated with a risk for development of pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Inhibidores de la Bomba de Protones , Ratones , Humanos , Animales , Inhibidores de la Bomba de Protones/efectos adversos , Ratones Transgénicos , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Páncreas/metabolismo , Neoplasias Pancreáticas
14.
Clin Pharmacol Ther ; 112(6): 1271-1279, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36087237

RESUMEN

High saturated fat diets have been shown to raise blood levels of cholecystokinin (CCK) and induce nonalcoholic steatohepatitis (NASH). CCK receptors are expressed on stellate cells and are responsible for hepatic fibrosis when activated. The purpose of this study was to test the safety and dose of a CCK receptor antagonist, proglumide, in human participants with NASH. An open-label single ascending dose study was conducted in 18 participants with clinical NASH based upon steatosis by liver ultrasound, elevated hepatic transaminases, and a component of the metabolic syndrome. Three separate cohorts (N = 6 each) were treated with oral proglumide for 12 weeks in a sequential ascending fashion with 800 (Cohort 1), 1,200 (Cohort 2), and 1,600 (Cohort 3) mg/day, respectively. Blood hematology, chemistries, proglumide levels, a biomarker panel for fibrosis, and symptom surveys were determined at baseline and every 4 weeks. Abdominal ultrasounds and transient elastography utilizing FibroScan were obtained at baseline and at Week 12. Proglumide was well tolerated at all doses without any serious adverse events. There was no change in body weight from baseline to Week 12. For Cohorts 1, 2, and 3, the median percent change in alanine aminotransferase was 8.42, -5.05, and -22.23 and median percent change in fibrosis score by FibroScan was 8.13, -5.44, and -28.87 (kPa), respectively. Hepatic steatosis as measured by controlled attenuation parameter score significantly decreased with proglumide, (P < 0.05). Blood microRNA biomarkers and serum 4-hydroxyproline were consistent with decreased fibrosis at Week 12 compared with baseline. These findings suggest proglumide exhibits anti-inflammatory and anti-fibrotic properties and this compound is well tolerated in participants with NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Colecistoquinina/metabolismo , Fibrosis , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proglumida/metabolismo , Proglumida/farmacología , Receptores de Colecistoquinina/metabolismo
15.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638432

RESUMEN

Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.

16.
Cancer Prev Res (Phila) ; 14(1): 17-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115780

RESUMEN

Hepatocellular carcinoma (HCC) is the fastest growing cancer worldwide in part due to the obesity epidemic and fatty liver disease, particularly nonalcoholic steatohepatitis (NASH). Chronic inflammation with the release of cytokines and chemokines with activation of hepatic stellate cells results in changes of the liver extracellular matrix (ECM) that predisposes to the development of HCC. Blood levels of the gastrointestinal peptide cholecystokinin (CCK) are increased in humans and mice consuming a high-fat diet. We found that the CCK-B receptor (CCK-BR) expression increased in the livers of mice with NASH. Treatment of mice with a CCK-BR antagonist, proglumide, prevented NASH, lowered hepatic inflammatory cytokines and chemokines, reduced oxidative stress, decreased F4/80+ hepatic macrophages, and prevented HCC. CCK-AR and CCK-BR expression was increased in both murine and human HCC cell lines compared with that of normal liver, and CCK stimulated the growth of wild-type and CCK-A receptor knockout HCC cells in vitro, but not CCK-BR knockout cells suggesting that the CCK-BR mediates proliferation. Proglumide therapy significantly reduced growth by 70% and 73% in mice bearing Dt81Hepa1-6 or in RIL-75 HCC tumors, respectively. IHC of a human liver tissue array with a selective CCK-BR antibody revealed staining of human HCC and no staining in normal liver. PREVENTION RELEVANCE: This investigation demonstrates the role of the gastrointestinal peptide cholecystokinin (CCK) in hepatocellular carcinoma (HCC) and how CCK-BR blockade reverses the premalignant state of the hepatic extracellular matrix hence, rendering it less susceptible to the development of HCC. Thereby, CCK-BR blockade is a novel approach for the prevention/treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Neoplasias Hepáticas/prevención & control , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proglumida/farmacología , Receptor de Colecistoquinina B/antagonistas & inhibidores , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Colecistoquinina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Proglumida/uso terapéutico , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo
17.
Netw Syst Med ; 3(1): 142-158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33274349

RESUMEN

Introduction: The post-exertional malaise of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) was modeled by comparing micro-RNA (miRNA) in cerebrospinal fluid from subjects who had no exercise versus submaximal exercise. Materials and Methods: Differentially expressed miRNAs were examined by informatics methods to predict potential targets and regulatory pathways affected by exercise. Results: miR-608, miR-328, miR-200a-5p, miR-93-3p, and miR-92a-3p had higher levels in subjects who rested overnight (nonexercise n=45) compared to subjects who had exercised before their lumbar punctures (n=15). The combination was examined in DIANA MiRpath v3.0, TarBase, Cytoscape, and Ingenuity software® to select the intersection of target mRNAs. DIANA found 33 targets that may be elevated after exercise, including TGFBR1, IGFR1, and CDC42. Adhesion and adherens junctions were the most frequent pathways. Ingenuity selected seven targets that had complementary mechanistic pathways involving GNAQ, ADCY3, RAP1B, and PIK3R3. Potential target cells expressing high levels of these genes included choroid plexus, neurons, and microglia. Conclusion: The reduction of this combination of miRNAs in cerebrospinal fluid after exercise suggested upregulation of phosphoinositol signaling pathways and altered adhesion during the post-exertional malaise of ME/CFS. Clinical Trial Registration Nos.: NCT01291758 and NCT00810225.

18.
Pancreas ; 48(7): 894-903, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31268978

RESUMEN

OBJECTIVE: The KRAS gene is the most frequently mutated gene in pancreatic cancer, and no successful anti-Ras therapy has been developed. Gastrin has been shown to stimulate pancreatic cancer in an autocrine fashion. We hypothesized that reactivation of the peptide gastrin collaborates with KRAS during pancreatic carcinogenesis. METHODS: LSL-Kras; P48-Cre (KC) mutant KRAS transgenic mice were crossed with gastrin-KO (GKO) mice to develop GKO/KC mice. Pancreata were examined for 8 months for stage of pancreatic intraepithelial neoplasia lesions, inflammation, fibrosis, gastrin peptide, and microRNA expression. Pancreatic intraepithelial neoplasias from mice were collected by laser capture microdissection and subjected to reverse-phase protein microarray, for gastrin and protein kinases associated with signal transduction. Gastrin mRNA was measured by RNAseq in human pancreatic cancer tissues and compared to that in normal pancreas. RESULTS: In the absence of gastrin, PanIN progression, inflammation, and fibrosis were significantly decreased and signal transduction was reversed to the canonical pathway with decreased KRAS. Gastrin re-expression in the PanINs was mediated by miR-27a. Gastrin mRNA expression was significantly increased in human pancreatic cancer samples compared to normal human pancreas controls. CONCLUSIONS: This study supports the mitogenic role of gastrin in activation of KRAS during pancreatic carcinogenesis.


Asunto(s)
Carcinogénesis/genética , Carcinoma in Situ/genética , Gastrinas/genética , Mutación , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Carcinogénesis/metabolismo , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Línea Celular Tumoral , Proliferación Celular/genética , Gastrinas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
19.
Cancer Epidemiol Biomarkers Prev ; 17(4): 995-1000, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18398044

RESUMEN

Detection of cancer cells at early stages could potentially increase survival rates in cancer patients. Aberrant promoter hypermethylation is a major mechanism for silencing tumor suppressor genes in many kinds of human cancers. A recent report from our laboratory described the use of quantitative methylation-specific PCR assays for discriminating patients with lung cancer from those without lung cancer using lung biopsies as well as sputum samples. TCF21 is known to be essential for differentiation of epithelial cells adjacent to mesenchyme. Using restriction landmark genomic scanning, a recent study identified TCF21 as candidate tumor suppressor at 6q23-q24 that is epigenetically inactivated in lung and head and neck cancers. Using DNA sequencing technique, we narrowed down a short CpG-rich segment (eight specific CpG sites in the CpG island within exon 1) of the TCF21 gene, which was unmethylated in normal lung epithelial cells but predominantly methylated in lung cancer cell lines. We specifically targeted this short CpG-rich sequence and developed a quantitative methylation-specific PCR assay suitable for high-throughput analysis. We showed the usefulness of this assay in discriminating patients with lung cancer from those without lung cancer using biopsies and sputum samples. We further showed similar applications with multiple other malignancies. Our assay might have important implications in early detection and surveillance of multiple malignancies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Metilación de ADN , Exones/genética , Neoplasias/genética , Humanos
20.
Sci Rep ; 8(1): 6455, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29674668

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA