Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur Radiol ; 32(5): 3173-3186, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35001159

RESUMEN

BACKGROUND AND OBJECTIVE: The systematic collection of medical images combined with imaging biomarkers and patient non-imaging data is the core concept of imaging biobanks, a key element for fuelling the development of modern precision medicine. Our purpose is to review the existing image repositories fulfilling the criteria for imaging biobanks. METHODS: Pubmed, Scopus and Web of Science were searched for articles published in English from January 2010 to July 2021 using a combination of the terms: "imaging" AND "biobanks" and "imaging" AND "repository". Moreover, the Community Research and Development Information Service (CORDIS) database ( https://cordis.europa.eu/projects ) was searched using the terms: "imaging" AND "biobanks", also including collections, projects, project deliverables, project publications and programmes. RESULTS: Of 9272 articles retrieved, only 54 related to biobanks containing imaging data were finally selected, of which 33 were disease-oriented (61.1%) and 21 population-based (38.9%). Most imaging biobanks were European (26/54, 48.1%), followed by American biobanks (20/54, 37.0%). Among disease-oriented biobanks, the majority were focused on neurodegenerative (9/33, 27.3%) and oncological diseases (9/33, 27.3%). The number of patients enrolled ranged from 240 to 3,370,929, and the imaging modality most frequently involved was MRI (40/54, 74.1%), followed by CT (20/54, 37.0%), PET (13/54, 24.1%), and ultrasound (12/54, 22.2%). Most biobanks (38/54, 70.4%) were accessible under request. CONCLUSIONS: Imaging biobanks can serve as a platform for collecting, sharing and analysing medical images integrated with imaging biomarkers, biological and clinical data. A relatively small proportion of current biobanks also contain images and can thus be classified as imaging biobanks. KEY POINTS: • Imaging biobanks are a powerful tool for large-scale collection and processing of medical images integrated with imaging biomarkers and patient non-imaging data. • Most imaging biobanks retrieved were European, disease-oriented and accessible under user request. • While many biobanks have been developed so far, only a relatively small proportion of them are imaging biobanks.


Asunto(s)
Bancos de Muestras Biológicas , Medicina de Precisión , Biomarcadores , Bases de Datos Factuales , Diagnóstico por Imagen , Humanos
2.
Chem Biodivers ; 17(1): e1900478, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31713998

RESUMEN

The in vitro cytotoxic activity on human cancer cell lines of sixteen commercial EOs such as Aloysia citriodora, Boswellia sacra, Boswellia serrata, Cinnamomum zeylanicum, Cistus ladanifer, Citrus × aurantium, Citrus limon, Citrus sinensis, Cymbopogon citratus, Foeniculum vulgare, Illicium verum, Litsea cubeba, Satureja montana, Syzygium aromaticum, Thymus capitatus and Thymus vulgaris was performed using the MTT reduction assay. The screening was carried out on human cancer cells of breast adenocarcinoma (MCF7, T47D and MDA-MB-231), chronic myelogenous erythroleukemia (K562) and neuroblastoma cell lines (SH-SY5Y). C. zeylanicum and L. cubeba EOs were the most active on almost all the cell lines studied and thus could be promising as an anticancer agent. These two species showed a difference in their composition even though they belong to the Lauraceae family. Almost 57 % of the true cinnamon composition was made of (E)-cinnamaldehyde, while L. cubeba showed citral as the major compound (68.9 %). The K562 cells were the most sensitive to these oils with an IC50 ranging from 5.2 parts-per million (ppm) (C. zeylanicum) to 11.1 ppm (L. cubeba). The latter oil also showed an important cytotoxicity on MDA-MB-231 (13.4 ppm).


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Aceites Volátiles/farmacología , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Cromatografía de Gases y Espectrometría de Masas , Humanos , Aceites Volátiles/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
3.
Radiol Artif Intell ; 6(1): e220257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38231039

RESUMEN

Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase (IDH) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of IDH mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, z = -1.9; P = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing IDH mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. Keywords: Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Glioblastoma , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Radiómica , Glioma/diagnóstico por imagen , Mutación
4.
Eur J Radiol Open ; 9: 100429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757232

RESUMEN

Purpose: Differentiating Warthin tumor (WT) from pleomorphic adenoma (PA) is of primary importance due to differences in patient management, treatment and outcome. We sought to evaluate the performance of MRI-based radiomic features in discriminating PA from WT in the preoperative setting. Methods: We retrospectively evaluated 81 parotid gland lesions (48 PA and 33 WT) on T2-weighted (T2w) images and 52 of them on post-contrast fat-suppressed T1-weighted (pcfsT1w) images. All MRI examinations were carried out on a 1.5-Tesla MRI scanner, and images were segmented manually using the software ITK-SNAP (www.itk-snap.org). Results: The most discriminative feature on pcfsT1w images was GLCM_InverseVariance, yielding area under the curve (AUC), sensitivity and specificity of 0.9, 86 % and 87 %, respectively. Skewness was the feature extracted from T2w images with the highest specificity (88 %) in discriminating WT from PA. Conclusion: Radiomic analysis could be an important tool to improve diagnostic accuracy in differentiating PA from WT.

5.
Eur Radiol Exp ; 6(1): 53, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36344838

RESUMEN

NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Medicina de Precisión/métodos , Bancos de Muestras Biológicas , Tomografía de Emisión de Positrones , Biomarcadores
6.
Artículo en Inglés | MEDLINE | ID: mdl-30013514

RESUMEN

Ulipristal acetate (UPA) is a selective progesterone receptor modulator (SPRM) used for emergency contraception and for the medical management of symptomatic uterine fibroids (UF). Treatment with UPA turns in amenorrhea and UF volume reduction. Treatment with UPA is associated with the frequent development of benign, transitory endometrial changes known as SPRM-associated endometrial changes (PAECs). Why PAECs develop and their biological or cellular basis is unknown. Sex steroids, including estrogen and progesterone, are established modulators of the actin cytoskeleton in various cells, including endometrial cells. This explains several morphological and functional changes in endometrial cells. We thus hypothesized that UPA may alter the appearance of the endometrium by interfering with the actions of 17ß-estradiol (E2) or progesterone (P4) on actin dynamics. We isolated and cultured human endometrial stromal cells (ESC) from endometrial biopsies from healthy fertile women. Treatment with E2 or P4 stimulated visible actin rearrangements with actin remodeling toward the membrane. Activation through phosphorylation of the actin regulatory proteins, Moesin, and focal adhesion kinase (FAK), hacked actin remodeling induced by E2 and P4. Membrane re-localization of Paxillin and Vinculin were also induced by E2 and P4, showing the formation of focal adhesion complexes. All these E2 and P4 actions were inhibited by co-treatment with UPA, which was otherwise inactive if given alone. The cytoskeletal changes induced by E2 and P4 turned into increased motility of ESC, and UPA again blocked the actions E2 and P4. In conclusion, we find that UPA interferes with the cytoskeletal actions of E2 and P4 in ESC. This finding helps understanding the mode of actions of SPRMs in the endometrium and may be relevant for other potential clinical applications of UPA.

7.
Maturitas ; 99: 1-9, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28364860

RESUMEN

BACKGROUND: Estetrol (E4) is a natural estrogen produced solely during human pregnancy. E4 is suitable for clinical use since it acts as a selective estrogen receptor modulator. In clinical trials E4 has been seen to have little or no effect on coagulation. Hence, it is interesting to investigate whether E4 alters endothelial-dependent fibrinolysis. OBJECTIVES: We studied the effects of E4 on the fibrinolytic system and whether this could influence the ability of endothelial cells to migrate. In addition, we compared the effects of E4 with those of 17ß-estradiol (E2). STUDY DESIGN: Human umbilical vein endothelial cells (HUVEC) were obtained from healthy women. Expression of plasminogen-activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (u-PA) and tissue plasminogen activator (t-PA) proteins was evaluated by Western blot analysis. Endothelial cell migration was studied by razor-scrape horizontal and multiwell insert systems assays. RESULTS: E4 increased the expression of t-PA, u-PA and PAI-1 in HUVEC, but less so than did equimolar amounts of E2. The effects of E4 on t-PA, u-PA and PAI-1 were mediated by the induction of the early-immediate genes c-Jun and c-Fos. E4 in combination with E2 antagonized the effects induced by pregnancy-like E2 concentrations but did not impair the effects of postmenopausal-like E2 levels. We also found that the increased synthesis of PAI-1, u-PA and t-PA induced by E2 and E4 is important for horizontal and three-dimensional migration of HUVEC. CONCLUSIONS: These results support the hypothesis that E4 acts as an endogenous selective estrogen receptor modulator (SERM), controlling the fibrinolytic system and endothelial cell migration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Estetrol/farmacología , Fibrinólisis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Activador de Tejido Plasminógeno/efectos de los fármacos , Activador de Plasminógeno de Tipo Uroquinasa/efectos de los fármacos , Western Blotting , Células Cultivadas , Células Endoteliales , Endotelio Vascular/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
8.
Mol Cell Endocrinol ; 430: 1-11, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27130522

RESUMEN

Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARß, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARß in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas de Microfilamentos/metabolismo , Paxillin/metabolismo , Tretinoina/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Femenino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas del Choque Térmico HSP72 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Familia-src Quinasas/metabolismo
9.
Mol Cell Endocrinol ; 430: 56-67, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095481

RESUMEN

Breast cancer is the major cause of cancer-related death in women. Its treatment is particularly difficult when metastasis occurs. The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cells are able to remodel the actin cytoskeleton, which requires the recruitment of numerous structural and regulatory proteins that modulate actin filaments dynamics, including Paxillin or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17-ß estradiol (E2) induces phosphorylation of Paxillin and its translocation toward membrane sites where focal adhesion complexes are assembled. This cascade is triggered by a Gαi1/Gß protein-dependent signaling of estrogen receptor α (ERα) to c-Src, focal adhesion kinase (FAK) and Paxillin. Within this complex, activated Paxillin recruits the small GTPase Cdc42, which triggers N-WASP phosphorylation. This results in the redistribution of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of Paxillin, Cdc42 and N-WASP is necessary for cell adhesion, migration and invasion induced by E2 in breast cancer cells. In parallel, we investigated whether Raloxifene (RAL), a selective estrogen receptor modulator (SERMs), could inhibit or revert the effects of E2 in breast cancer cell movement. We found that, in the presence of E2, RAL acts as an ER antagonist and displays an inhibitory effect on estrogen-promoted cell adhesion and migration via FAK/Paxillin/N-WASP. Our findings identify an original mechanism through which estrogen regulates breast cancer cell motility and invasion via Paxillin. These results may have clinical relevance for the development of new therapeutic strategies for cancer treatment.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Estrógenos/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Paxillin/metabolismo , Transducción de Señal , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Humanos , Invasividad Neoplásica , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Familia-src Quinasas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-27746764

RESUMEN

The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin-radixin-moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen - DHT - only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment.

11.
Oncotarget ; 7(37): 60133-60154, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27507057

RESUMEN

Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/ß-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Glipicanos/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Glipicanos/metabolismo , Humanos , Células MCF-7 , Ratones Desnudos , Interferencia de ARN , Trasplante Heterólogo , Carga Tumoral/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
12.
Clin Exp Metastasis ; 32(2): 151-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25636904

RESUMEN

In human breast cancer, ß-catenin localization has been related with disease prognosis. Since HER2-positive patients are an important subgroup, and that in breast cancer cells a direct interaction of ß-catenin/HER2 has been reported, in the present study we have explored whether ß-catenin location is related with the disease survival. The study was performed in a tumor bank from patients (n = 140) that did not receive specific anti-HER2 therapy. The proteins were detected by immunohistochemistry in serial sections, 47 (33.5%) patients were HER2-positive with a long follow-up. HER2-positive patients that displayed ß-catenin at the plasma membrane (completely surrounding the tumour cells) showed a significant better disease-free survival and overall survival than the patients showing the protein on other locations. Then we explored the dynamics of the co-expression of ß-catenin and HER2 in human MCF-7 and SKBR3 cells exposed to different stressful situations. In untreated conditions MCF-7 and SKBR3 cells showed very different ß-catenin localization. In MCF-7 cells, cadmium administration caused a striking change in ß-catenin localization driving it from plasma membrane to cytoplasmic and perinuclear areas and HER2 showed a similar localization patterns. The changes induced by cadmium were compared with heat shock, H2O2 and tamoxifen treatments. In conclusion, this study shows the dynamical associations of HER2 and ß-catenin and their changes in subcellular localizations driven by stressful situations. In addition, we report for the first time the correlation between plasma membrane associated ß-catenin in HER2-positive breast cancer and survival outcome, and the importance of the protein localization in breast cancer samples.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , beta Catenina/metabolismo , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/mortalidad , Cadmio/farmacología , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Peróxido de Hidrógeno/química , Inmunohistoquímica , Pronóstico , Tamoxifeno/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA