Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 412(7): 1573-1583, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31932862

RESUMEN

We report a smartphone-paper-based sensor impregnated with cetyltrimethylammonium bromide modified silver nanoparticles (AgNPs/CTAB) for determination of Fe3+ in water and blood plasma samples. The methodology for determination of Fe3+ is based on the change in signal intensity of AgNPs/CTAB fabricated on a paper substrate after the deposition of analyte, using a smartphone followed by processing with ImageJ software. The mechanism of sensing for detection and determination of Fe3+ is based on the discoloration of AgNPs which impregnated the paper substrate. The discoloration is attributed to the electron transfer reaction taking place on the surface of NPs in the presence of CTAB. Fe3+ was determined when the paper was impregnated with 1 mM AgNPs for 5 min of reaction time and the substrate was kept under acidic conditions. The linear range for determination of total iron in terms of Fe3+ was 50-900 µg L-1 with a limit of determination (LOD) of 20 µg L-1 and coefficient of variation (CV) of 3.2%. The good relative recovery of 91.3-95.0% and interference studies showed the selectivity of the method for determination of total iron in water and blood plasma samples. Smartphone-paper-based sensors have advantages of simplicity, rapidity, user-friendliness, low cost, and miniaturization of the method for on-site determination of total iron compared to methods that require sophisticated analytical instruments. Graphical abstract Smartphone-paper-based sensor with cetyltrimethylammonium bromide modified silver nanoparticles for determination of Fe3+ in water and blood plasma samples.


Asunto(s)
Hierro/análisis , Hierro/sangre , Papel , Teléfono Inteligente , Agua/química , Límite de Detección
2.
Mikrochim Acta ; 187(3): 173, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32072273

RESUMEN

An optical colorimetric and smartphone-integrated paper device (SIPD) is demonstrated for determination of As (III) in water and soil samples using sucrose modified gold nanoparticles (AuNPs/Suc) as a nanoprobe. The mechanism for determination of As(III) is experimentally validated by performing UV-Vis, transmission electron microscope (TEM), Fourier transforms infra-red spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The density function theory (DFT) calculations using B3LYP with 6-311G (2d,2p) and LANL2DZ basis sets is used to theoretically prove the mechanism for determination of As(III). In addition, the paper fabricated with AuNPs/SuC was used as a nanoprobe for quantitative determination of As(III) using smartphone and ImageJ software. Calibration plot was linear over 10-800 µgL-1 for colorimetric determination of As(III) with limit of detection (LOD) of 4 µgL-1 acquired when the absorbance ratio obtained at 594 nm/515 nm. The linearity range of 50-3000 µgL-1 with LOD of 20 µgL-1 was determined using smartphone-integrated paper device. AuNPs/Suc is successfully employed for determination of As (III) from contaminated water and soil samples in colorimetry and SIPD. Graphical abstractColorimetric and Smartphone-integrated paper device used for selective detection of arsenic from contaminated water samples using sucrose modified gold nanoparticles (AuNPs/Suc) as a sensing probe.


Asunto(s)
Arsénico/química , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Teléfono Inteligente/instrumentación , Sacarosa/química , Colorimetría/instrumentación , Humanos , Papel
3.
Anal Bioanal Chem ; 411(26): 6943-6957, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31444531

RESUMEN

A novel, facile, and low-cost method was developed for determination of cetyltrimethylammonium (CTA+) cationic surfactant in water samples using diffuse reflectance Fourier transform IR (FTIR) spectroscopy and colorimetry. Cetyltrimethylammonium bromide was chosen as a model compound to demonstrate the optimization of the method for determination of CTA+ in water samples. The absorption peak at 3015.96 cm-1 (for CTA+) was enhanced when gold nanoparticles were used as a chemical sensor in diffuse reflectance FTIR spectroscopy, and this absorption peak was used for determination of CTA+. Alternatively, the color change from wine red (525 nm) to blue (740 nm) and the redshift of the localized surface plasmon resonance band in the visible region were used as a sensing probe for determination of CTA+. A linear calibration curve for determination in water samples was obtained in the range from 10 to 100 ng mL-1 with a limit of detection of 3 ng mL-1 by diffuse reflectance FTIR spectroscopy and in the range from 20 to 400 ng mL-1 with a limit of detection of 7 ng mL-1 by colorimetry. The advantageous features of the methods are their simplicity, rapidity, and sensitivity for the determination of CTA+ in water samples. Graphical abstract.

4.
Anal Chem ; 89(1): 776-782, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27966881

RESUMEN

A simple, low cost and user-friendly method for the fabrication of paper electrode (PE) using silver nanoparticles capped with octylamine (AgNPs-OA) is reported for detection of hydrogen peroxide (H2O2) in wastewater samples. The PE was prepared by direct writing onto the photo paper using a ball-point pen filled with nanoink (10 wt % of AgNPs-OA in chloroform). The prepared electrode was sintered at 100 °C for 1 h to make it conductive. The PE/AgNPs-OA was used as a working electrode in cyclic voltammetry (CV) for the detection of H2O2. The PE/AgNPs-OA exhibited a wide linear calibration range from 1.7 µM to 30 mM for the determination of H2O2 with a low limit of detection, 0.5 µM. The good recovery percentage (95.2-96.2%) and interference study for determination of H2O2 in wastewater samples demonstrated the selectivity of the method from the complex sample matrices. The PE/AgNPs-OA electrode is found to be economic, facile and user-friendly for multiple analyses (n = 60) of H2O2 in CV compared to other commercially available electrodes and custom-made modified electrodes.

5.
Toxicol Appl Pharmacol ; 267(1): 125-36, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23274569

RESUMEN

The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of "rare" CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level.


Asunto(s)
Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/genética , Espectrometría de Masas/métodos , Microsomas Hepáticos/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Femenino , Humanos , Masculino , Microsomas Hepáticos/química , Datos de Secuencia Molecular
6.
RSC Adv ; 13(25): 17179-17187, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37304784

RESUMEN

Here, we report an inkjet-printed graphene paper electrode (IP-GPE) for the electrochemical analysis of mercuric ions (Hg(ii)) in industrial wastewater samples. Graphene (Gr) fabricated on a paper substrate was prepared by a facile solution-phase exfoliation method in which ethyl cellulose (EC) behaves as a stabilizing agent. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to determine the shape and multiple layers of Gr. The crystalline structure and ordered lattice carbon of Gr were confirmed by X-ray diffraction (XRD) and Raman spectroscopy. The nano-ink of Gr-EC was fabricated on the paper substance via an inkjet printer (HP-1112) and IP-GPE was exploited as a working electrode in linear sweep voltammetry (LSV) and cyclic voltammetry (CV) for the electrochemical detection of Hg(ii). The electrochemical detection is found to be diffusion-controlled illustrated by obtaining a correlation coefficient of 0.95 in CV. The present method exhibits a better linear range of 2-100 µM with a limit of detection (LOD) of 0.862 µM for the determination of Hg(ii). The application of IP-GPE in electrochemical analysis shows a user-friendly, facile, and economical method for the quantitative determination of Hg(ii) in municipal wastewater samples.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122824, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37192578

RESUMEN

The increasing use of pesticides in the agriculture fields strengthen the crop production to meet the needs of increasing population. The residues in water and food materials cause several health hazards. Herein, nitrogen-doped carbon quantum dot (N-CQDs) is designed for determination of methiocarb pesticide in vegetables by fluorescent paper sensor and compared the results with fluorimetry. The fluorescent paper-based detection is performed by recording the change in fluorescence of N-CQDs with introduction of methiocarb using smartphone and ImageJ software. Good linear range was acquired for analysis of methiocarb from 10 to 1000 µgL-1 with a low detection limit (LOD) of 3.5 µgL-1 in fluorimetry; and 700-10,000 µgL-1 with a LOD of 500 µgL-1 in fluorescent paper sensor. A better recovery from 92.0 to 95.4% illustrating the selectivity of both methods for analysis of methiocarb in vegetables. Thus, the advantage of using N-CQDs as a fluorescent sensor for analysis of methiocarb in vegetables is instrument free, portable and user-friendly.


Asunto(s)
Metiocarb , Plaguicidas , Puntos Cuánticos , Colorantes Fluorescentes/química , Verduras , Puntos Cuánticos/química , Nitrógeno/química , Carbono/química , Teléfono Inteligente , Fluorometría , Espectrometría de Fluorescencia/métodos
8.
Nanoscale ; 15(47): 19016-19038, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37991896

RESUMEN

The need for precise determination of heavy metals, anions, biomolecules, pesticides, drugs, and other substances is vital across clinical, environmental, and food safety domains. Recent years have seen significant progress in portable colorimetric chemical sensing devices, revolutionizing on-the-spot analysis. This review offers a comprehensive overview of these advancements, covering handheld colorimetry, RGB-based colorimetry, paper-based colorimetry, and wearable colorimetry devices. It explores the underlying principles, functional materials (chromophoric reagents/dyes and nanoparticles), detection mechanisms, and their applications in environmental monitoring, clinical care, and food safety. Noble metal nanoparticles (NPs) have arisen as promising substitutes in the realm of sensing materials. They display notable advantages, including heightened sensitivity, the ability to fine-tune their plasmonic characteristics for improved selectivity, and the capacity to induce visible color changes, and simplifying detection. Integration of NPs fabricated paper device with smartphones and wearables facilitates reagent-free, cost-effective, and portable colorimetric sensing, enabling real-time analysis and remote monitoring.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Plaguicidas , Colorimetría , Nanopartículas del Metal/química , Plaguicidas/análisis , Teléfono Inteligente
9.
Sci Total Environ ; 857(Pt 2): 159516, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270356

RESUMEN

Eleven potentially toxic metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), proven source markers of mineral based coal-fired industrial emissions and vehicular exhausts, were analysed using the four steps sequential extraction method to evaluate metal(loid)s concentration, in total and fractions of bioavailable and non-bioavailable for fine (PM2.5) and coarse (PM10-2.5) particulate modes. A total of 26-day-wise samples with three replications (total number of samples = 78) were collected in January-December 2019 for each PM10 and PM2.5 at an urban-residential site in India. In both the coarse and fine particulate modes, Pb and Cr have respectively shown the highest and lowest total concentrations of the measured metal(loid)s, indicating the presence of coal-fired power plants and heavy vehicular activities near to study area. In addition, Mn has shown highest bioavailable fraction for both coarse and fine particulate modes. More than 50 % of metal(loid)s concentration, in total to a bioavailable fraction (BAF) were observed in case of As, Cd, Cr, Co, Mn, Ni, and Pb of PM2.5. Mn and Zn have shown similar behaviour in the case of coarse particulate mode. Source apportionment of metal(loid)s bioavailable fractions using positive matrix factorization (PMF 5.0) has found three significant sources: crustal and natural dust (30.04 and 39 %), road traffic (49.57 and 20 %), and industrial emission (20.39 and 41 %) for coarse and fine particulate mode, respectively. Cancer risk through the inhalation pathway was high in total concentration but lower in BAF concentration in both age groups (children and adults).


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Neoplasias , Niño , Adulto , Humanos , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Disponibilidad Biológica , Cadmio/análisis , Plomo/análisis , Polvo/análisis , Fraccionamiento Químico , Carbón Mineral/análisis , India , Medición de Riesgo , Metales Pesados/análisis , Contaminantes Atmosféricos/análisis
10.
Analyst ; 137(4): 890-5, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22163366

RESUMEN

A new approach for rapid and highly sensitive protein extraction using cobalt oxide nanoparticles modified with cetyltrimethylammonium (Co(3)O(4)/CTA(+) NP) using nanoparticle-based liquid-liquid microextraction (NP-LLME) coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been successfully demonstrated. For the first time, the metal oxide NPs (Co(3)O(4)/CTA(+) NP) prepared in the organic phase (toluene) have been successfully applied for the extraction and preconcentration of proteins from sample solutions and complex samples via electrostatic forces involved between the metal oxide NP and proteins. Lysozyme was used as the model protein to investigate the optimal extraction parameters of the current approach. The optimal conditions were obtained at pH > pI for 10 min of incubation time (extraction time) with 3% salt (NaCl) addition. The Co(3)O(4)/CTA(+) NP was successfully applied for the highly sensitive analysis of an array proteins such as insulin, chymotrypsinogen and lysozyme from aqueous solution, protein mixture and milk samples in nanoparticle-based liquid-phase microextraction coupled with MALDI-MS. The potentiality of the NP-LLME using Co(3)O(4)/CTA(+) NP for the extraction of proteins was also compared with other types of NP-liquid phase microextraction (LPME) methods. The current approach offers distinct advantages including rapidity, straightforwardness, high sensitivity for washing- and separation-free MALDI-MS analysis of proteins.


Asunto(s)
Quimotripsinógeno/análisis , Insulina/análisis , Microextracción en Fase Líquida/métodos , Muramidasa/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Compuestos de Cetrimonio/química , Cobalto/química , Nanopartículas del Metal , Leche/química , Óxidos/química , Electricidad Estática
11.
Food Chem ; 383: 132449, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35183953

RESUMEN

Herein, a user-friendly and portable smartphone-integrated printed-paper sensor was designed with Cu@Ag nanoparticles (NPs) for on-site monitoring of dimethoate pesticide in food samples, and the results obtained are compared with those obtained by UV-vis spectrophotometry. The working principle for identification of dimethoate pesticide is the change of yellow color NPs to reddish-yellow with associated bathochromic shift of absorption peak when pesticide introduced onto the fabricated paper or glass vial containing the NPs. A smartphone-color detector App and colorimetry were used for quantitative analysis of dimethoate in food samples. Linearity range for analysis of dimethoate using paper sensor and colorimetry were 100-2000 µgL-1 and 50-2500 µgL-1 with detection limit of 30 and 16 µgL-1, respectively. The advantages of using smartphone-integrated paper devices are rapid, instrument-free detection and economic in terms of consumption of lower amounts of NPs solution compared to other NPs-based colorimetric methods.


Asunto(s)
Nanopartículas del Metal , Plaguicidas , Colorimetría/métodos , Dimetoato , Plata , Teléfono Inteligente
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120523, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715558

RESUMEN

This paper describes the sensing application of citrate functionalized gold nanoparticles (AuNPs) employing for the determination of L-cysteine in food and water samples. It is established with diffuse reflectance Fourier transform infrared (DRS-FTIR) spectroscopic analysis. The disappearance of the thiol (-SH) band in the FTIR spectra and the shift in the peaks of the amino group (NH3+) and carboxylate group (-COO-) indicated the Au-S interaction and the aggregation of the NPs. The signal intensity of L-cysteine was enhanced due to hot-spots formed by the aggregation of AuNPs producing the effective absorption of electromagnetic radiation in the IR region for molecular vibration. The relationship between AuNPs and L-cysteine was theoretically investigated by the Density Function Theory (DFT) based on LANL2DZ with the aid of the Gaussian 09 (C.01) software. Interaction between AuNPs and L-cysteine molecules resulted to a shift to higher wavelengths in the plasmon bands, further verified by transmission electron microscopes (TEM), which have indicated random aggregated particles. Further dynamic light scattering (DLS) measurements showed a relatively high degree of polydispersity confirming the aggregation of the particles. Under optimized conditions, the calibration curve showed a good linearity range from 20 to 150 µg mL-1 with a correlation coefficient (R2) 0.990. The limit of detection and quantification were 1.04 and 3.44 µg mL-1, respectively by DRS-FTIR. This modified AuNPs sample was used successfully in milk and water samples with adequate results to determine L-cysteine.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Citratos , Ácido Cítrico , Cisteína , Leche , Espectroscopía Infrarroja por Transformada de Fourier , Agua
13.
Anal Chem ; 83(19): 7283-9, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21894964

RESUMEN

We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.


Asunto(s)
Encéfalo/metabolismo , Histidina/análisis , Nanopartículas/química , Titanio/química , Animales , Histidina/metabolismo , Masculino , Ratones , Peso Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Propiedades de Superficie
14.
Analyst ; 136(13): 2852-7, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21617798

RESUMEN

We report the use of platinum nanoparticles (PtNPs) for analysis of amino acids, peptides, proteins and microwave digested proteins (lysozyme and bovine serum albumin) without any tedious washing and separation procedures prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the present study, PtNPs play three functions, such as matrix, affinity probe and acceleration of protein digestion by absorbing the microwave irradiation. Good signal intensity of the target molecules from the sample was obtained when laser energy, NPs concentration and incubation time were set to 35 µJ, 25 nM and 30 min, respectively. In addition, higher numbers of peptide sequence were obtained for microwave digested lysozyme protein using PtNPs as compared to previously reported methods for analysis of digested protein in MALDI-MS. Thus, the present method is a simple, rapid and one step preparation method for the analysis of amino acids, peptides, proteins and digested proteins in MALDI-TOF-MS without the need for any tedious purifications and washing procedures.


Asunto(s)
Aminoácidos/análisis , Nanopartículas del Metal/química , Microondas , Péptidos/análisis , Platino (Metal)/química , Proteínas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Bovinos , Humanos , Péptidos/química , Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , Factores de Tiempo
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118961, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33010538

RESUMEN

A simple, selective and sensitive method is proposed for determination of cysteine (Cys) in milk samples using ionic liquid functionalized silver nanoparticles (ILs-AgNPs) as a colorimetric probe. ILs-AgNPs was synthesized by simple reduction method using silver nitrate as a precursor and sodium borohydride as a reducing agent and functionalized with ILs to prevent particles from self-aggregation. The sensing mechanism has been dependent on the color change of ILs-AgNPs and red shift of absorption band from 395 nm to 560 nm in the visible region, which is found proportional to the concentration of target analyte in sample. ILs-AgNPs was characterized in absence and presence of Cys by UV-vis, Fourier transform-infrared (FTIR) spectroscopy, transmission electron microscope (TEM) and dynamic light scattering (DLS). The linear range was acquired in the range of 0-100 ng mL-1, with correlation coefficient (R2) of 0.996 and limit of detection (LOD) of 4.0 nM. The binding mechanism and interactions between Cys and ILs-AgNPs was confirmed by calculating the binding constant and thermodynamic parameters such as enthalpy (∆H), entropy (∆S) and Gibb's free energy (∆G). The use of ILs-AgNPs exhibited high colorimetric selectivity for Cys in milk samples in presence of other amino acids. This proposed strategy possessed the advantages of simplicity and selectivity, hence is applied for analysis of Cys in milk samples.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Animales , Cisteína , Leche , Plata , Espectrofotometría Ultravioleta
16.
RSC Adv ; 11(34): 20769-20780, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35479386

RESUMEN

We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions. The paper-based detection of As(iii) and Pb(ii) is based on the change in the signal intensity of AuNPs/Glu fabricated on a paper substrate after the deposition of the analyte using a smartphone, followed by processing with the ImageJ software. The colorimetric method is based on the change in the color and the red shift of the localized surface plasmon resonance (LSPR) absorption band of AuNPs/Glu in the region of 200-800 nm. The red shift (Δλ) of the LSPR band observed was from 525 nm to 660 nm for As(iii) and from 525 nm to 670 nm for Pb(ii). The mechanism of dual-mode detection is due to the non-covalent interactions of As(iii) and Pb(ii) ions with glucose molecule present on the surface AuNPs, resulting in the aggregation of novel metal nanoparticles. The calibration curve gave a good linearity range of 20-500 µg L-1 and 20-1000 µg L-1 for the determination of As(iii) and Pb(ii) with the limit of detection of 5.6 µg L-1 and 7.7 µg L-1 for both metal ions, respectively. The possible effects of different metal ions and anions were also investigated but did not cause any significant interference. The employment of AuNPs/Glu is successfully demonstrated for the determination of As(iii) and Pb(ii) using paper-based and colorimetric sensors in environmental water samples.

17.
J Hazard Mater ; 414: 125440, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33684821

RESUMEN

We report an inkjet-printed paper based colorimetric sensor with silver nanoparticles (AgNPs) using smartphone and color detector App for on-site determination of mercuric ion (Hg2+) from environmental water samples. The AgNPs printed on Whatman filter paper (No. 1) is employed for detection of Hg2+ which is reliant on the color change of NPs from yellow to discoloration depending on the concentration of target analyte in sample solution. The quantitative determination was performed by calculating the signal intensity of AgNPs on printed paper substrate after the introduction of Hg2+ using smartphone and RGB color detector. The mechanism for detection of Hg2+ on paper substrate is verified using UV-Vis spectrophotometry (UV-Vis), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS) and basic chemical assays. The linear range acquired for paper based colorimetric detection in the range of 40-1200 µgL-1 with limit of detection of 10 µgL-1. The results obtained using an inkjet-printed paper-based chemical sensor combined with a smartphone is validated with data of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) measurement. The advantages of paper based detection are simple, rapid, economic and can be applied at the sample sources for determination of Hg2+.

18.
Anal Chem ; 82(21): 8800-6, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20939518

RESUMEN

The ionic matrix (IM) is considered to be versatile for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the identification of a wide range of biomolecules due to its good solubility for a variety of analytes, formation of homogeneous crystals with analytes, and high vacuum stability. When these advantages are exploited, the performance of IM of α-cyano-4-hydroxycinnamic acid butylamine (CHCAB) and 2,5-dihydroxybenzoic acid butylamine (DHBB) was compared with other matrixes for the identification of phospholipids in standard mixtures and mouse liver tissue sections. The results showed that the IM of CHCAB caused higher signal intensity and allowed the detection of a number phospholipids such as phosphatidylethanolamine (PE) and phosphatidylserine (PS) in addition to detection of phosphatidylcholine (PC) on the surface of the liver tissue sample. The IM of CHCAB was also used to identify the species of lipids present in different layers of cerebellum where the greater numbers of biomolecules were detected as compared to DHB matrix. Further, the feasibility of the proposed method was extended for the analysis of tryptic digested cytochrome c for increased signal intensity and number of peptide sequences in MALDI-MS. Thus, the application of IM to MALDI-MS could be a promising tool for imaging biomolecules in tissue sections in high throughput analyses with high sensitivity.


Asunto(s)
Cerebelo/química , Hígado/química , Fosfolípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Límite de Detección , Ratones , Reproducibilidad de los Resultados
19.
Med Mol Morphol ; 43(1): 1-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20339999

RESUMEN

We have developed a mass microscopy technique, i.e., a microscope combined with high-resolution matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), which is a powerful tool for investigating the spatial distribution of biomolecules without any time-consuming extraction, purification, and separation procedures for biological tissue sections. Mass microscopy provides clear images about the distribution of hundreds of biomolecules in a single measurement and also helps in understanding the cellular profile of the biological system. The sample preparation and the spatial resolution and speed of the technique are all important steps that affect the identification of biomolecules in mass microscopy. In this Award Lecture Review, we focus on some of the recent developments in clinical applications to show how mass microscopy can be employed to assess medical molecular morphology.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Humanos , Aumento de la Imagen , Lípidos/análisis , Preparaciones Farmacéuticas/análisis , Proteínas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
20.
Environ Monit Assess ; 168(1-4): 315-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19685273

RESUMEN

A new, simple, sensitive, and selective spectrophotometric method for the determination of copper in water and soil samples has been demonstrated. The method is based on the reaction of Cu(I) with neocuproine (2,9-dimethyl-1, 10-phenanothroline) and extracted with N-phenyl benzimidoylthiourea in chloroform. The value of molar absorptivity of the complex in the term of Cu(I) is 1.45 x 10(5) L mol(-1)cm(-1) at lambda(max) 460 nm in chloroform. The detection limit of copper in water and soil is 2 ng mL(-1) and 4 ng g(-1), respectively. The method is free from the interference of the ions commonly found to be associated with the copper determination in water and soil samples. The application of the proposed method has been successfully tested for the determination of copper in different types of water and soil samples.


Asunto(s)
Fraccionamiento Químico , Cobre/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA