Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32531202

RESUMEN

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genoma , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Procesamiento Proteico-Postraduccional , Neoplasias Cutáneas/genética , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Elementos de Facilitación Genéticos , Femenino , Xenoinjertos , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pez Cebra
2.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
3.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096186

RESUMEN

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Asunto(s)
Plasticidad de la Célula/genética , Reprogramación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Biosíntesis de Proteínas/genética , Animales , Microambiente Celular , Evolución Molecular , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Invasividad Neoplásica/genética , Cresta Neural/citología , Fenotipo , Factores de Transcripción/metabolismo , Pez Cebra/embriología
4.
Pediatr Dev Pathol ; 27(1): 3-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37771132

RESUMEN

BACKGROUND: Next generation sequencing (NGS) has increased the detection of fusion genes in cancer. NGS has found multiple fusions in single tumor samples; however, the incidence of this in pediatric soft tissue and bone tumors (PSTBTs) is not well documented. The aim of this study is to catalogue the incidence of multiple fusions in a series of PSTBTs, and apply a modified gene fusion classification system to determine clinical relevance. METHODOLOGY: RNA from 78 bone and soft tissue tumors and 7 external quality assessment samples were sequenced and analyzed using recently-described Metafusion (MF) software and classified using a modification of previously-published schema for fusion classification into 3 tiers: 1, strong clinical significance; 2, potential clinical significance; and 3, unknown clinical significance. RESULTS: One-hundred forty-five fusions were detected in 85 samples. Fifty-five samples (65%) had a single fusion and 30 (35%) had more than 1 fusion. No samples contained more than 1 tier 1 fusion. There were 40 tier 1 (28%), 36 tier 2 (24%), and 69 (48%) tier 3 fusions. CONCLUSIONS: A significant percentage of PSTBTs harbor more than 1 fusion, and by applying a modified fusion classification scheme, the potential clinical relevance of such fusions can be determined.


Asunto(s)
Neoplasias Óseas , Neoplasias de los Tejidos Blandos , Humanos , Niño , Incidencia , Neoplasias Óseas/genética , Neoplasias de los Tejidos Blandos/genética , Fusión Génica , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Fusión Oncogénica/genética
5.
Pediatr Dev Pathol ; : 10935266231221903, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401149

RESUMEN

We report a case of a primary cardiac spindle cell neoplasm with concerning histological features and a rare PDGFRA::USP8 gene fusion in a 3 year old boy. The patient presented with a large cardiac mass predominantly in the right ventricle, originating from the ventricular septum. The mass was resected with grossly negative margins. Pathology revealed an unclassified spindle cell neoplasm with a PDGFRA::USP8 gene fusion. This gene fusion has only been previously reported twice in the medical literature, one in a pediatric cardiac sarcoma and the other in an abdominal soft tissue tumor in an adult woman. The patient is alive and well with no evidence of recurrence 11 months after excision.

6.
Mol Cell Proteomics ; 21(10): 100411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089195

RESUMEN

Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.


Asunto(s)
Chaperonas de Histonas , Histonas , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Cromatina , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factores de Transcripción/metabolismo , Nucleosomas
7.
Bioinformatics ; 37(19): 3144-3151, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33944895

RESUMEN

MOTIVATION: Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. RESULTS: MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers. AVAILABILITY AND IMPLEMENTATION: MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Acta Neuropathol ; 144(5): 1027-1048, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070144

RESUMEN

Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.


Asunto(s)
Glioma , Histonas , Aminoácidos/genética , Niño , ADN , Glioma/genética , Glioma/metabolismo , Histonas/genética , Humanos , Mutación/genética , Nucleosomas , Factores de Transcripción/genética
9.
J Cell Sci ; 128(15): 2938-50, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092939

RESUMEN

The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF family proteins in fly and mammals. Collectively, this evidence points to an ancient module comprising Mitf, v-ATPase and TORC1 that serves as a dynamic modulator of metabolism for cellular homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factores de Transcripción/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Drosophila , Activación Enzimática , Homeostasis/fisiología , Humanos , Melanocitos/metabolismo , Melanoma/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Transcripción Genética/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
JCO Glob Oncol ; 10: e2300269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38754050

RESUMEN

PURPOSE: Molecular characterization is key to optimally diagnose and manage cancer. The complexity and cost of routine genomic analysis have unfortunately limited its use and denied many patients access to precision medicine. A possible solution is to rationalize use-creating a tiered approach to testing which uses inexpensive techniques for most patients and limits expensive testing to patients with the highest needs. Here, we tested the utility of this approach to molecularly characterize pediatric glioma in a cost- and time-sensitive manner. METHODS: We used a tiered testing pipeline of immunohistochemistry (IHC), customized fusion panels or fluorescence in situ hybridization (FISH), and targeted RNA sequencing in pediatric gliomas. Two distinct diagnostic algorithms were used for low- and high-grade gliomas (LGGs and HGGs). The percentage of driver alterations identified, associated testing costs, and turnaround time (TAT) are reported. RESULTS: The tiered approach successfully characterized 96% (95 of 99) of gliomas. For 82 LGGs, IHC, targeted fusion panel or FISH, and targeted RNA sequencing solved 35% (29 of 82), 29% (24 of 82), and 30% (25 of 82) of cases, respectively. A total of 64% (53 of 82) of samples were characterized without targeted RNA sequencing. Of 17 HGG samples, 13 were characterized by IHC and four were characterized by targeted RNA sequencing. The average cost per sample was more affordable when using the tiered approach as compared with up-front targeted RNA sequencing in LGG ($405 US dollars [USD] v $745 USD) and HGGs ($282 USD v $745 USD). The average TAT per sample was also shorter using the tiered approach (10 days for LGG, 5 days for HGG v 14 days for targeted RNA sequencing). CONCLUSION: Our tiered approach molecularly characterized 96% of samples in a cost- and time-sensitive manner. Such an approach may be feasible in neuro-oncology centers worldwide, particularly in resource-limited settings.


Asunto(s)
Glioma , Humanos , Glioma/genética , Glioma/diagnóstico , Glioma/patología , Niño , Masculino , Preescolar , Femenino , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/economía , Neoplasias Encefálicas/diagnóstico , Hibridación Fluorescente in Situ/economía , Lactante , Inmunohistoquímica/economía , Recursos en Salud/economía , Análisis de Secuencia de ARN/economía , Configuración de Recursos Limitados
11.
J Mol Diagn ; 25(12): 921-931, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37748705

RESUMEN

Oncogenic fusion genes may be identified from next-generation sequencing data, typically RNA-sequencing. However, in a clinical setting, identifying these alterations is challenging against a background of nonrelevant fusion calls that reduce workflow precision and specificity. Furthermore, although numerous algorithms have been developed to detect fusions in RNA-sequencing, there are variations in their individual sensitivities. Here this problem was addressed by introducing MetaFusion into clinical use. Its utility was illustrated when applied to both whole-transcriptome and targeted sequencing data sets. MetaFusion combines ensemble fusion calls from eight individual fusion-calling algorithms with practice-informed identification of gene fusions that are known to be clinically relevant. In doing so, it allows oncogenic fusions to be identified with near-perfect sensitivity and high precision and specificity, significantly outperforming the individual fusion callers it uses as well as existing clinical-grade software. MetaFusion enhances clinical yield over existing methods and is able to identify fusions that have patient relevance for the purposes of diagnosis, prognosis, and treatment.


Asunto(s)
Neoplasias , Programas Informáticos , Humanos , Análisis de Secuencia de ARN/métodos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/diagnóstico , Neoplasias/genética , ARN , Fusión Génica
12.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605606

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Humanos , Ratones , Encéfalo/patología , Neoplasias Encefálicas/genética , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular/genética , Glioma/genética , Histonas/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Mutación , Transducción de Señal
13.
Nat Commun ; 13(1): 588, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102191

RESUMEN

High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Oncogenes/genética , Empalme del ARN/genética , Adulto , Empalme Alternativo/genética , Animales , Secuencia de Bases , Sitios de Unión , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Niño , Cromatina/metabolismo , Exones/genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Mutación/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/genética , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo
14.
Cancer Discov ; 11(6): 1454-1467, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33563663

RESUMEN

The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Predisposición Genética a la Enfermedad , Glioma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Niño , Neoplasias Colorrectales/genética , Femenino , Glioma/genética , Salud Global , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Mutación
15.
Cancer Discov ; 11(5): 1176-1191, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33355208

RESUMEN

Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Transformación Celular Neoplásica , Reparación de la Incompatibilidad de ADN , ADN Polimerasa Dirigida por ADN , Regulación Neoplásica de la Expresión Génica , Inestabilidad de Microsatélites , Neoplasias/genética , Humanos , Secuenciación del Exoma
16.
Nat Commun ; 11(1): 6216, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277484

RESUMEN

Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations.


Asunto(s)
Neoplasias Encefálicas/genética , Epigénesis Genética , Glioma/genética , Histonas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas ras/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Modelos Animales de Enfermedad , Epigenómica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo
17.
Neuro Oncol ; 22(1): 139-151, 2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31398252

RESUMEN

BACKGROUND: Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs. METHODS: Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts. RESULTS: Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo. CONCLUSIONS: Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Neoplasias Encefálicas/metabolismo , ADN Mitocondrial/metabolismo , Ácido Dicloroacético/farmacología , Metabolismo Energético/fisiología , Glioma/metabolismo , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Animales , Neoplasias Encefálicas/genética , Niño , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/efectos de la radiación , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/efectos de la radiación , Dosificación de Gen , Glioma/genética , Glucólisis/efectos de los fármacos , Glucólisis/efectos de la radiación , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Cell ; 37(3): 308-323.e12, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32142668

RESUMEN

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors for which there is currently no effective treatment. Some of these tumors combine gain-of-function mutations in ACVR1, PIK3CA, and histone H3-encoding genes. The oncogenic mechanisms of action of ACVR1 mutations are currently unknown. Using mouse models, we demonstrate that Acvr1G328V arrests the differentiation of oligodendroglial lineage cells, and cooperates with Hist1h3bK27M and Pik3caH1047R to generate high-grade diffuse gliomas. Mechanistically, Acvr1G328V upregulates transcription factors which control differentiation and DIPG cell fitness. Furthermore, we characterize E6201 as a dual inhibitor of ACVR1 and MEK1/2, and demonstrate its efficacy toward tumor cells in vivo. Collectively, our results describe an oncogenic mechanism of action for ACVR1 mutations, and suggest therapeutic strategies for DIPGs.


Asunto(s)
Receptores de Activinas Tipo I/química , Receptores de Activinas Tipo I/genética , Neoplasias Encefálicas/patología , Glioma/patología , Mutación , Receptores de Activinas Tipo I/antagonistas & inhibidores , Receptores de Activinas Tipo I/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Glioma/tratamiento farmacológico , Glioma/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lactonas/farmacología , Masculino , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neuroglía/metabolismo , Neuroglía/patología , Oligodendroglía/patología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo
19.
Cancer Res ; 80(24): 5606-5618, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938641

RESUMEN

POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. SIGNIFICANCE: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy.See related commentary by Wisdom and Kirsch p. 5459.


Asunto(s)
ADN Polimerasa II , Neoplasias , Animales , ADN Polimerasa II/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Mutación , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética
20.
Cancer Cell ; 37(4): 569-583.e5, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32289278

RESUMEN

Pediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. To address this, we characterized a cohort of >1,000 clinically annotated pLGG. Eighty-four percent of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway. pLGG could be broadly classified based on their alteration type. Rearrangement-driven tumors were diagnosed at a younger age, enriched for WHO grade I histology, infrequently progressed, and rarely resulted in death as compared with SNV-driven tumors. Further sub-classification of clinical-molecular correlates stratified pLGG into risk categories. These data highlight the biological and clinical differences between pLGG subtypes and opens avenues for future treatment refinement.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Glioma/genética , Mutación , Adolescente , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Glioma/clasificación , Glioma/patología , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Neurofibromina 1/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA