Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 56(15): 4243-4249, 2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29047845

RESUMEN

This paper reports a comprehensive theoretical study of W-shaped complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure consisting of two quantum wells of InAs material using the six-band k.p theory. The entire structure has been supposed to be grown on InP substrate. In order to optimize the optical gain, the probability densities of electrons and holes were optimized in the heterostructure. Following these calculations, dispersion relations for electron and hole energies, and transverse electric and transverse magnetic polarizations dependent dipole matrix elements and momentum matrix elements were calculated and, finally, the optical gain in both polarization modes was calculated. For this optimized complex heterostructure, a very high optical gain of the order of ∼4500 cm-1 in the regime of mid-infrared wavelength ∼3.2 µm has been achieved. The results suggest that the designed nano-heterostructure may be utilized for mid-infrared region (MIR) applications such as chemical and bio-molecular sensing of molecules, for the applications of spectroscopy in the "fingerprint region" of molecular science, and for detection of atmospheric gases that respond to 3.2 µm wavelength.

2.
Sci Rep ; 10(1): 11032, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620921

RESUMEN

In this research work, SnO2, NiO and SnO2/NiO nanocomposites were synthesized at low temperature by modified sol-gel method using ultrasonication. Prepared samples were investigated for their properties employing various characterization techniques. X-ray diffraction (XRD) patterns confirmed the purity and phase of the samples as no secondary phase was detected. The average crystallite size of the nanocomposites was found to decrease from 19.24 to 4.53 nm with the increase in NiO concentration. It was confirmed from SEM micrographs that the material has mesoporous morphology. This mesoporous morphology resulted in the increase of the surface to mass ratio of the material, which in turn increases the specific capacitance of the material. The UV-Visible spectra showed the variation in the band gap of SnO2/NiO at different weight ratio ranging from 3.49 to 3.25 eV on increasing NiO concentration in the samples. These composites with different mass ratio of SnO2 and NiO were also characterized by FT-IR spectroscopy that showed shifting of the peaks centered at 545 cm-1 in the spectra for NiO/SnO2 nanocomposite. The analysis of the electrochemical performance of the material was done with the help of cyclic voltammetry and Galvanostatic charge-discharge. The specific capacitance of the synthesized samples with different concentration of SnO2 and NiO was analyzed at different scan rates of 5 to 100 mV/s. Interestingly, 7:1 mass ratio of NiO and SnO2 (SN7) nanocomposite exhibited a maximum specific capacitance of ~ 464 F/g at a scan rate of 5 mV/s and good capacitance retention of 87.24% after 1,000 cycles. These excellent electrochemical properties suggest that the SnO2/NiO nanocomposite can be used for high energy density supercapacitor electrode material.

3.
Braz J Med Biol Res ; 43(2): 186-94, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20084331

RESUMEN

We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.


Asunto(s)
1-Butanol/farmacología , Presión Sanguínea/efectos de los fármacos , Loranthaceae/química , Músculo Liso Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Vasodilatación/efectos de los fármacos , 1-Butanol/aislamiento & purificación , Animales , Aorta Torácica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Masculino , Metanol/aislamiento & purificación , Metanol/farmacología , Ratas , Ratas Sprague-Dawley
4.
Braz. j. med. biol. res ; 43(2): 186-194, Feb. 2010. graf, tab
Artículo en Inglés | LILACS | ID: lil-538234

RESUMEN

We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.


Asunto(s)
Animales , Masculino , Ratas , 1-Butanol/farmacología , Presión Sanguínea/efectos de los fármacos , Loranthaceae/química , Músculo Liso Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Vasodilatación/efectos de los fármacos , 1-Butanol/aislamiento & purificación , Aorta Torácica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Metanol/aislamiento & purificación , Metanol/farmacología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA