Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Immunol Immunother ; 72(6): 1865-1880, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36688994

RESUMEN

Radiotherapy (RT) not only damages tumors but also induces interferon (IFN) expression in tumors. IFNs mediate PD-L1 to exhaust CD8+ T cells, but which also directly impact tumor cells and potentially activate anti-tumor immune surveillance. Little is known about the contradictory mechanism of IFNs in regulating CD8+ T-mediated anti-tumor activity in lung cancer. This study found that RT induced IFNs and CXCL9/10 expression in the RT-treated lung cancer cells. Specifically, RT- and IFNγ-pretreated A549 significantly activated CD8+ T cells, resulting in significant inhibition of A549 colony formation. RNAseq and consequent qPCR results revealed that IFNγ induced PD-L1, CXCL10, and ICAM-1, whereas PD-L1 knockdown activated CD8+ T cells, but ICAM-1 knockdown diminished CD8+ T cell activation. We further demonstrated that CXCR3 and CXCL10 decreased in the CD8+ T cells and nonCD8+ PBMCs, respectively, in the patients with lung cancer that expressed lower reactivation as co-cultured with A549 cells. In addition, inhibitors targeting CXCR3 and LFA-1 in CD8+ T cells significantly diminished CD8+ T cell activation and splenocytes-mediated anti-LL/2shPdl1. In conclusion, we validated that RT suppressed lung cancer and overexpress PD-L1, CXCL10, and ICAM-1, which exhibited different roles in regulating CD8+ T cell activity. We propose that CXCR3highCD8+ T cells stimulated by CXCL10 exhibit anti-tumor immunity, possibly by enhancing T cells-tumor cells adhesion through CXCL10/CXCR3-activated LFA-1-ICAM-1 interaction, but CXCR3lowCD8+ T cells with low CXCL10 in patients with lung cancer were exhausted by PD-L1 dominantly. Therefore, RT potentially activates CD8+ T cells by inducing IFNs-mediated CXCL10 and ICAM-1 expression in tumors to enhance CD8+ T-tumor adhesion and recognition. This study clarified the possible mechanisms of RT and IFNs in regulating CD8+ T cell activation in lung cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pulmonares , Humanos , Quimiocina CXCL10/metabolismo , Antígeno B7-H1/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Interferón gamma/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
2.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379705

RESUMEN

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Modelos Animales de Enfermedad , Células 3T3 , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , Chlorocebus aethiops , Dependovirus/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción Genética , Células Vero
3.
Cancer Immunol Immunother ; 70(5): 1351-1364, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33146402

RESUMEN

The mechanism exhausting CD8+ T cells is not completely clear against tumors. Literature has demonstrated that cigarette smoking disables the immunological activity, so we propose nicotine is able to exhaust CD8+ T cells. The CD8+ T cells from healthy volunteers with and without cigarette smoking and the capacity of CD8+ T cells against tumor cells were investigated. RNAseq was used to investigate the gene profiling expression in CD8+ T cells. Meanwhile, small RNAseq was also used to search novel microRNAs involved in the exhaustion of CD8+ T cells. The effect of nicotine exhausting CD8+ T cells was investigated in vitro and in the humanized tumor xenografts in vivo. We found that CD8+ T cells were able to reduce cell viability in lung cancer HCC827 and A549 cells, that secreted granzyme B, but CD8+ T cells from the healthy cigarette smokers lost anti-HCC827 effect. Moreover, nicotine suppressed the anti-HCC827 effect of CD8+ T cells. RNAseq revealed lower levels of IL2RB and GZMB in the exhausted CD8+ T cells. We identified that miR-629-5p was increased by nicotine, that targeted IL2RB. Transfection of miR-629-5p mimic reduced IL2RB and GZMB levels. We further validated that nicotine reduced granzyme B levels using a nuclear imaging technique, and demonstrated that nicotine exhausted peripheral blood mononuclear cells against HCC827 growth in the humanized tumor xenografts. This study demonstrated that nicotine exhausted CD8+ T cells against HCC827 cells through increasing miR-629-5p to suppress IL2RB.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Linfocitos T CD8-positivos/inmunología , Subunidad beta del Receptor de Interleucina-2/metabolismo , MicroARNs/genética , Nicotina/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Fumar Cigarrillos/efectos adversos , Regulación Neoplásica de la Expresión Génica , Granzimas/genética , Granzimas/metabolismo , Humanos , Subunidad beta del Receptor de Interleucina-2/genética , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023006

RESUMEN

Signal transducer and activator of transcription 3 (STAT3), a transcriptional factor involved in tumorigenesis and cancer stemness formation, contributes to drug resistance in cancer therapies. STAT3 not only mediates gene transcription but also participates in microRNA suppression. This study identified a STAT3-downstream micro RNA (miRNA) involved in drug resistance against regorafenib in colorectal cancer stem-like tumorspheres. Small RNAseq was used to investigate differential microRNAs in colorectal cancer cell-derived tumorspheres and in a STAT3-knockdown strain. The miRNA-mediated genes were identified by comparing RNAseq data with gene targets predicted using TargetScan. Assays for detecting cell viability and apoptosis were used to validate findings. The formation of colorectal cancer stem-like tumorspheres was inhibited by BBI608, a STAT3 inhibitor, but not by regorafenib. Additional investigations for microRNA expression demonstrated an increase in 10 miRNAs and a decrease in 13 miRNAs in HT29-derived tumorspheres. A comparison of small RNAseq results between tumorspheres and HT29shSTAT3 cells revealed the presence of four STAT3-mediated miRNAs in HT29-derived tumorspheres: hsa-miR-215-5p, hsa-miR-4521, and hsa-miR-215-3p were upregulated, whereas miR-30a-5p was downregulated. Furthermore, hsa-miR-4521 was associated with poor overall survival probability, and miR-30a-5p was associated with better overall survival probability in patients with rectum cancer. Comparisons of RNAseq findings between HCT116- and HT29-derived tumorspheres revealed that HSPA5 were mediated by the STAT3-miR-30a-5p axis, which is overexpressed in colorectal tumorspheres associating to anti-apoptosis. In addition, the transfection of miR-30a-5p and inhibition of HSPA5 by HA15 significantly reduced cell viability and increased apoptosis in HT29 cells. In conclusion, a STAT3-miR-30a-5p-HSPA5 axis was observed against regorafenib-mediated apoptosis in colorectal cancer tumorspheres. The expression of miR-30a-5p was repressed by STAT3; in addition, HSPA5 was identified as the target gene of miR-30a-5p and contributed to both tumorsphere formation and anti-apoptosis.


Asunto(s)
Neoplasias Colorrectales/genética , Proteínas de Choque Térmico/genética , MicroARNs/genética , Factor de Transcripción STAT3/genética , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Neoplasias Colorrectales/patología , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HT29 , Humanos
5.
BMC Cancer ; 19(1): 959, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619200

RESUMEN

BACKGROUND: HER3 mediates drug resistance against epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), resulting in tumor relapse in lung cancers. Previously, we demonstrated that EGFR induces HER3 overexpression, which facilitates the formation of cancer stem-like tumorspheres. However, the cellular mechanism through which EGFR regulates HER3 expression remains unclear. We hypothesized that EGFR downstream of STAT3 participates in HER3 expression because STAT3 contributes to cancer stemness and survival of EGFR-TKI resistant cancers. METHODS: First, RNAseq was used to uncover potential genes involved in the formation of lung cancer HCC827-derived stem-like tumorspheres. EGFR-positive lung cancer cell lines, including HCC827, A549, and H1975, were individually treated with a panel containing 172 therapeutic agents targeting stem cell-associated genes to search for potential agents that could be applied against EGFR-positive lung cancers. In addition, gene knockdown and RNAseq were used to investigate molecular mechanisms through which STAT3 regulates tumor progression and the survival in lung cancer. RESULTS: BBI608, a STAT3 inhibitor, was a potential therapeutic agent that reduced the cell viability of EGFR-positive lung cancer cell lines. Notably, the inhibitory effects of BBI608 were similar with those associated with YM155, an ILF3 inhibitor. Both compounds reduced G9a-mediated HER3 expression. We also demonstrated that STAT3 upregulated G9a to silence miR-145-5p, which exacerbated HER3 expression in this study. CONCLUSIONS: The present study revealed that BBI608 could eradicate EGFR-positive lung cancers and demonstrated that STAT3 enhanced the expression of HER3 through miR-145-5p repression by G9a, indicating that STAT3 is a reliable therapeutic target against EGFR-TKI-resistant lung cancers.


Asunto(s)
Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-3/metabolismo , Factor de Transcripción STAT3/metabolismo , Células A549 , Animales , Benzofuranos/farmacología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Imidazoles/farmacología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Naftoquinonas/farmacología , Proteínas del Factor Nuclear 90/antagonistas & inhibidores , Proteínas del Factor Nuclear 90/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Receptor ErbB-3/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Emerg Microbes Infect ; 12(1): 2149353, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36395071

RESUMEN

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Anticuerpos Antivirales , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de Subunidad/inmunología , Vacunas contra la COVID-19/inmunología
7.
Int Immunopharmacol ; 112: 109110, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36037651

RESUMEN

Radiotherapy (RT) is applied to eradicate tumors in the clinic. However, hepatocellular carcinoma (HCC) exhibits resistance against RT. It is demonstrated that RT directly inhibits tumor growth but which induces type I interferons (IFNs) expression to phosphorylate STATs and increase STATs-downstream PD-L1 levels in the survival tumor cells. Since sorafenib is capable of suppressing STATs, we, therefore, hypothesize that sorafenib suppresses IFNs-mediated radioresistance and PD-L1 in the residual tumor cells and may synergistically enhance RT-mediated reactivation of CD8+ T immunological activity to eradicate HCC cells. We found that combined RT, sorafenib, and PBMCs significantly suppress the colony formation in the HCC cells, whereas CD8+ T cells expressed high granzyme B (GZMB) and perforin (PRF1) in co-cultured with RT-treated HCC cells. We demonstrated RT significantly inhibited HCC cell viability but induced IFNα and IL-6 expression in the RT-treated HCC cells, resulting in immune checkpoint PD-L1 and anti-apoptosis MCL1 and BCL2 overexpression in the non-RT HCC cells. We found that sorafenib decreased RT-PLC5 medium (RT-PLC5-m)-mediated cell growth by suppressing IFNα- and IL-6-mediated STAT1 and STAT3 phosphorylation. Sorafenib also reduced IFNα-mediated PD-L1 levels in HCC cells. Meanwhile, RT-PLC5-m reactivated CD8+ T cells and non-CD8+ PBMCs, resulting in high IFNγ and IL-2 levels in CD8+ T cells, and cytokines IFNα, IFNγ, IL-2, and IL-6 in non-CD8+ PBMCs. Particularly, CD8+ T cells expressed higher GZMB and PRF1 and non-CD8+ PBMCs expressed higher IFNα, IFNγ, IL-2, IL-6, CXCL9, and CXCL10 in co-cultured with RT-treated HCC cells compared to parental cells. Although we demonstrated that sorafenib slightly inhibited RT-mediated GZMB and PRF1 expression in CD8+ T cells, and cytokines levels in non-CD8+ PBMCs. Based on sorafenib significantly suppressed IFNα- and IL-6-mediated radioresistance and PD-L1 expression, we demonstrated that sorafenib synergized RT and immune surveillance for suppressing PLC5 cell viability in vitro. In conclusion, this study revealed that RT induced IFNα and IL-6 expression to phosphorylate STAT1 and STAT3 by autocrine and paracrine effect, leading to radioresistance and PD-L1 overexpression in HCC cells. Sorafenib not only suppressed IFNα- and IL-6-mediated PLC5 cell growth but also inhibited IFNα-mediated PD-L1 expression, synergistically enhancing RT-mediated CD8+ T cell reactivation against HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Interferón Tipo I , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/radioterapia , Sorafenib/farmacología , Sorafenib/uso terapéutico , Antígeno B7-H1/metabolismo , Granzimas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Linfocitos T CD8-positivos/metabolismo , Perforina/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Citocinas/metabolismo , Interferón Tipo I/metabolismo , Línea Celular Tumoral
8.
Biomedicines ; 9(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34680466

RESUMEN

Irradiation-broken DNA fragments increase type I interferon and chemokines secretion in tumor cells. Since radiotherapy may augment tumor immunotherapy, we hypothesize that the chemokines increased by irradiation could recruit CD8+ T cells to suppress tumor proliferation. This study intended to unveil the secreted factors activating and recruiting CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive A549 was selected and treated by X-irradiation (IR) to identify the overexpression of chemokines associated to CD8+ T cell cytotoxicity and recruitment. A transwell assay with Alexa 488-labeled CD8+ T cells was used to evaluate CD8+ T cell motility in vitro. A nuclear imaging platform by In111-labeled nivolumab was used to track CD8+ T cells homing to tumors in vivo. The activation markers GZMB, PRF-1, and IFNγ, migration marker CD183 (CXCR3), and inhibitory marker CD274 (PD-1), were measured and compared in CD8+ T cells with A549 co-cultured, chemokines treated, and patients with late-stage lung cancer. We found that IR not only suppressed A549 proliferation but also induced IFNα and CXCL9 expression (p < 0.05). IFNα majorly increased IFNγ levels in CD8+ T cells (p < 0.05) and synergistically with CXCL9 enhanced CD8+ T cell migration in vitro (p < 0.05). We found that CXCR3 and PD-1 were down-regulated and up-regulated, respectively, in the peripheral blood CD8+ T cells in patients with lung cancer (n = 4 vs. healthy n = 3, both p < 0.05), which exhibited reduction of cell motility (p < 0.05). The in vivo nuclear imaging data indicated highly CD8+ T cells migrated to A549-induced tumors. In addition, we demonstrated that healthy PBMCs significantly suppressed the parallel tumor growth (p < 0.05) and the radioresistant tumor growth in the tumor xenograft mice (p < 0.05), but PBMCs from patients with lung cancer had lost the anti-tumor capacity. We demonstrated that IR induced IFNα and CXCL9 expression in A549 cells, leading to CD8+ T cell migration. This study unveiled a potential mechanism for radiotherapy to activate and recruit CD8+ T cells to suppress lung tumors.

9.
Cells ; 10(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34685495

RESUMEN

Tumor cells express immune checkpoints to exhaust CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical applications. However, the radiotherapy-mediated molecular mechanism affecting CD8+ T cell activity remains elusive. We aimed to uncover the mechanism of radiotherapy augmenting cytotoxic CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive NSCLC cell lines were co-cultured with CD8+ T cells from healthy volunteers. Tumor cell viability and apoptosis were consequently measured. IFNγ was identified secreted by CD8+ T cells and PBMCs. Therefore, RNAseq was used to screen the IFNγ-mediated gene expression in A549 cells. The irradiation effect to IFNγ-mediated gene expression was investigated using qPCR and western blots. We found that the co-culture of tumor cells stimulated the increase of granzyme B and IFNγ in CD8+ T, but A549 exhibited resistance against CD8+ T cytotoxicity compared to HCC827. Irradiation inhibited A549 proliferation and enhanced apoptosis, augmenting PBMCs-mediated cytotoxicity against A549. We found that IFNγ simultaneously increased phosphorylation on STAT1 and STAT3 in EGFR-positive lung cancer, resulting in overexpression of PD-L1 (p < 0.05). In RNAseq analysis, MCL1 was identified and increased by the IFNγ-STAT3 axis (p < 0.05). We demonstrated that irradiation specifically inhibited phosphorylation on STAT1 and STAT3 in IFNγ-treated A549, resulting in reductions of PD-L1 and MCL1 (both p < 0.05). Moreover, knockdowns of STAT3 and MCL1 increased the PBMCs-mediated anti-A549 effect. This study demonstrated that A549 expressed MCL1 to resist CD8+ T cell-mediated tumor apoptosis. In addition, we found that irradiation suppressed IFNγ-mediated STAT3 phosphorylation and PD-L1 and MCL1 expression, revealing a potential mechanism of radiotherapy augmenting immune surveillance.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias Pulmonares/terapia , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Radioterapia , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/fisiología , Humanos , Inmunoterapia/métodos , Interferón gamma/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Radioterapia/métodos
10.
Cancers (Basel) ; 13(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830778

RESUMEN

Radioresistance is one of the major factors that contributes to radiotherapy failure in oral cavity squamous cell carcinoma (OSCC). By comparing the prognostic values of 20,502 genes expressed in patients in The Cancer Genome Atlas (TCGA)-OSCC cohort with (n = 162) and without radiotherapy (n = 118), herein identified 297 genes positively correlated with poor disease-free survival in OSCC patients with radiotherapy as the potential radioresistance-associated genes. Among the potential radioresistance-associated genes, 36 genes were upregulated in cancerous tissues relative to normal tissues. The bioinformatics analysis revealed that 60S ribosomal protein L36a (RPL36A) was the most frequently detected gene involved in radioresistance-associated gene-mediated biological pathways. Then, two independent cohorts (n = 162 and n = 136) were assessed to confirm that higher RPL36A transcript levels were significantly associated with a poor prognosis only in OSCC patients with radiotherapy. Mechanistically, we found that knockdown of RPL36A increased radiosensitivity via sensitizing cells to DNA damage and promoted G2/M cell cycle arrest followed by augmenting the irradiation-induced apoptosis pathway in OSCC cells. Taken together, our study supports the use of large-scale genomic data for identifying specific radioresistance-associated genes and suggests a regulatory role for RPL36A in the development of radioresistance in OSCC.

11.
J Vis Exp ; (161)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32773762

RESUMEN

Cancer stem cells play a vital role against clinical therapies, contributing to tumor relapse. There are many oncogenes involved in tumorigenesis and the initiation of cancer stemness properties. Since gene expression in the formation of colorectal cancer-derived tumorspheres is unclear, it takes time to discover the mechanisms working on one gene at a time. This study demonstrates a method to quickly discover the driver genes involved in the survival of the colorectal cancer stem-like cells in vitro. Colorectal HT29 cancer cells that express the LGR5 when cultured as spheroids and accompany an increase CD133 stemness markers were selected and used in this study. The protocol presented is used to perform RNAseq with available bioinformatics to quickly uncover the overexpressed driver genes in the formation of colorectal HT29-derived stem-like tumorspheres. The methodology can quickly screen and discover potential driver genes in other disease models.


Asunto(s)
Neoplasias Colorrectales/genética , Células Madre Neoplásicas/patología , Esferoides Celulares , Carcinogénesis/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Células HT29 , Humanos
12.
Cancers (Basel) ; 12(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131390

RESUMEN

With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is ubiquitously expressed and essential for embryonic angiogenesis in mice. Increasing evidence indicates the role of WNK kinases in tumorigenesis at least partly by stimulating tumor cell proliferation. Here, we show that human hepatoma cells xenotransplanted into zebrafish produced high levels of vascular endothelial growth factor (VEGF) and WNK1, and induced expression of zebrafish wnk1. Knockdown of wnk1 in zebrafish decreased tumor-induced ectopic vessel formation and inhibited tumor proliferation. Inhibition of WNK1 or its downstream kinases OSR1 (oxidative stress responsive kinase 1)/SPAK (Ste20-related proline alanine rich kinase) using chemical inhibitors decreased ectopic vessel formation as well as proliferation of xenotransplanted hepatoma cells. The effect of WNK and OSR1 inhibitors is greater than that achieved by inhibitor of VEGF signaling cascade. These inhibitors also effectively inhibited tumorigenesis in two separate transgenic zebrafish models of intestinal and hepatocellular carcinomas. Endothelial-specific overexpression of wnk1 enhanced tumorigenesis in transgenic carcinogenic fish, supporting endothelial cell-autonomous effect of WNK1 in tumor promotion. Thus, WNK1 can promote tumorigenesis by multiple effects that include stimulating tumor angiogenesis. Inhibition of WNK1 may be a potent anti-cancer therapy.

13.
Cancers (Basel) ; 11(11)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766290

RESUMEN

Our three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN. Fluorescent microscopy revealed that KDM4C co-localized with AR and c-Myc in the nuclei of PCa cells. Overexpression of either AKT or c-Myc rescued the suppressive effect of KDM4C KD on PCa cell proliferation. Echoing the above findings, the mRNA and protein expression of KDM4C was higher in human prostate tumor tissues as compared to adjacent normal prostate tissues, and higher KDM4C protein expression in prostate tumors correlated to higher protein expression level of AKT and c-Myc. In conclusion, KDM4C promotes the proliferation of PCa cells via activation of c-Myc and AKT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA