Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831137

RESUMEN

BACKGROUND: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. METHODS: Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing's sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. RESULTS: The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. CONCLUSIONS: Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.

2.
Biomedicines ; 10(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35327489

RESUMEN

(1) Background: Chondrosarcoma (CS) is a malignant primary bone tumor with a cartilaginous origin. Its slow cell division and severely restricted vascularization are responsible for its poor responsiveness to chemotherapy and radiotherapy. The decisive factor for the prognosis of CS patients is the only adequate therapy-surgical resection. Cold atmospheric pressure plasma (CAP) is emerging as a new option in anti-cancer therapy. Its effect on chondrosarcomas has been poorly investigated. (2) Methods: Two CS cell lines-SW 1353 and CAL 78-were used. Various assays, such as cell growth kinetics, glucose uptake, and metabolic activity assay, along with two different apoptosis assays were performed after CAP treatment. A radius cell migration assay was used to examine cell motility. (3) Results: Both cell lines showed different growth behavior, which was taken into account when using the assays. After CAP treatment, a reduction in metabolic activity was observed in both cell lines. The immediate effect of CAP showed a reduction in cell numbers and in influence on this cell line's growth rate. The measurement of the glucose concentration in the cell culture medium showed an increase after CAP treatment. Live-dead cell imaging shows an increase in the proportion of dead cells over the incubation time for both cell lines. There was a significant increase in apoptotic signals after 48 h and 72 h for both cell lines in both assays. The migration assay showed that CAP treatment inhibited the motility of chondrosarcoma cells. The effects in all experiments were related to the duration of CAP exposure. (4) Conclusions: The CAP treatment of CS cells inhibits their growth, motility, and metabolism by initiating apoptotic processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA