Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202402978, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38517942

RESUMEN

By reaction of sodium electride or NaC2H with the anhydrous sodium salt of propiolic acid, Na(OOC-C≡C-H), in liquid ammonia crystalline powders of Na2C3O2 were obtained. The structure analysis based on synchrotron powder diffraction data revealed that Na2C3O2 crystallizes in a monoclinic unit cell (I2/a, Z=4) exhibiting the elusive Y-shaped -C≡C-COO- anion, which is unprecedented in a crystalline compound up to now. IR/Raman and solid-state NMR spectroscopic investigations with assignments supported by DFT-based ab initio calculations confirm this finding. Reaction with sodium electride led to a higher crystallinity of the product, but additionally a by-product apparently due to decomposition and polymerization of Na2C3O2 was formed. No such by-product was observed in the reaction with NaC2H, which turned out to be a milder metalation route. However, the product of the latter reaction is less crystalline.

2.
J Am Chem Soc ; 145(50): 27563-27575, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38060438

RESUMEN

Sulfonated, cross-linked porous polymers are promising frameworks for aqueous high-performance electrolyte-host systems for electrochemical energy storage and conversion. The systems offer high proton conductivities, excellent chemical and mechanical stabilities, and straightforward water management. However, little is known about mass transport mechanisms in such nanostructured hosts. We report on the synthesis and postsynthetic sulfonation of an aromatic framework (SPAF-2) with a 3D-interconnected nanoporosity and varying sulfonation degrees. Water adsorption produces the system SPAF-2H20. It features proton exchange capacities up to 6 mequiv g-1 and exceptional proton conductivities of about 1 S cm-1. Two contributions are essential for the highly efficient transport. First, the nanometer-sized pores link the charge transport to the diffusion of adsorbed water molecules, which is almost as fast as bulk water. Second, continuous exchange between interface-bound and mobile species enhances the conductivities at elevated temperatures. SPAF-2H20 showcases how to tailor nanostructured electrolyte-host systems with liquid-like conductivities.

3.
J Cancer Educ ; 38(2): 545-551, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35233754

RESUMEN

Patient education (PE) is vital in reducing anxiety, increasing satisfaction with treatment, helping with self-management, and creating a sense of control for cancer patients. Patients access much of their material from health care providers through in-person visits, patient libraries, and in-person classes. Due to reductions in in-person visits throughout the pandemic, we sought to understand how PE programs responded under varying levels of COVID-19 restrictions to meet the information needs of patients and families. A cross-sectional survey was distributed to members of the Cancer Patient Education Network (CPEN) and the Health Care Education Association (HCEA) via the respective listservs. The survey consisted of five sections that included closed and opened questions. Participants were asked questions to describe their PE programs and how their duties were affected during the pandemic. Forty-two CPEN members completed the survey (N = 42, 66%) with a 35% response rate and a 55% completion rate, and 19 HCEA members completed the survey (N = 19, 30%) with a 5% response rate and 16% completion rate. The majority of staff surveyed were not furloughed (N = 57/64, 89%). Just under half reported a change in daily PE program activities (N = 23/52, 44%) and most reported a change in developing PE materials (e.g., pamphlets) (N = 10/26, 63%), finding information for patients/families (N = 11/19, 58%), and delivering classes (N = 12/21, 57%). COVID-19 has ushered in a new era in the delivery of PE with the rapid deployment of digital cancer patient education. Results can inform future directions for the delivery of PE post-pandemic.


Asunto(s)
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiología , Pandemias , Estudios Transversales , Encuestas y Cuestionarios , Ansiedad , Neoplasias/terapia
4.
Angew Chem Int Ed Engl ; 62(29): e202218679, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37102303

RESUMEN

The solution chemistry of aluminum is highly complex and various polyoxocations are known. Here we report on the facile synthesis of a cationic Al24 cluster that forms porous salts of composition [Al24 (OH)56 (CH3 COO)12 ]X4 , denoted CAU-55-X, with X=Cl- , Br- , I- , HSO4 - . Three-dimensional electron diffraction was employed to determine the crystal structures. Various robust and mild synthesis routes for the chloride salt [Al24 (OH)56 (CH3 COO)12 ]Cl4 in water were established resulting in high yields (>95 %, 215 g per batch) within minutes. Specific surface areas and H2 O capacities with maximum values of up to 930 m2 g-1 and 430 mg g-1 are observed. The particle size of CAU-55-X can be tuned between 140 nm and 1250 nm, permitting its synthesis as stable dispersions or as highly crystalline powders. The positive surface charge of the particles, allow fast and effective adsorption of anionic dye molecules and adsorption of poly- and perfluoroalkyl substances (PFAS).

5.
Langmuir ; 38(35): 10781-10790, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35863753

RESUMEN

Swelling of clays is hampered by increasing layer charge. With vermiculite-type layer charge densities, crystalline swelling is limited to the two-layer hydrate, while osmotic swelling requires ion exchange with bulky and hydrophilic organic molecules or with Li+ cations to trigger repulsive osmotic swelling. Here, we report on surprising and counterintuitive osmotic swelling behavior of a vermiculite-type synthetic clay [Na0.7]inter[Mg2.3Li0.7]oct[Si4]tetO10F2 in mixtures of water and dimethyl sulfoxide (DMSO). Although swelling in pure water is restricted to crystalline swelling, with the addition of DMSO, osmotic swelling sets in at some threshold composition. Finally, when the DMSO concentration is increased further to 75 vol %, swelling is restricted again to crystalline swelling as expected. Repulsive osmotic swelling thus is observed in a narrow composition range of the binary water-DMSO mixture, where a freezing point suppression is observed. This suppression is related to DMSO and water molecules exhibiting strong interactions leading to stable molecular clusters. Based on this phenomenological observation, we hypothesize that the unexpected swelling behavior might be related to the formation of different complexes of interlayer cations being formed at different compositions. Powder X-ray diffraction and 23Na magic angle spinning-NMR evidence is presented that supports this hypothesis. We propose that the synergistic solvation of the interlayer sodium at favorable compositions exerts a steric pressure by the complexes formed in the interlayer. Concomitantly, the basal spacing is increased to a level, where entropic contributions of interlayer species lead to a spontaneous thermodynamically allowed one-dimensional dissolution of the clay stack.

6.
Biomacromolecules ; 23(11): 4841-4850, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36327974

RESUMEN

The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(l-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75-80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance.


Asunto(s)
Poliésteres , Polímeros , Endopeptidasa K/metabolismo , Poliésteres/química , Polímeros/química , Temperatura
7.
Chemistry ; 26(17): 3877-3883, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31991507

RESUMEN

Herein is reported the utilization of acetonitrile as a new solvent for the synthesis of the three significantly different benchmark metal-organic frameworks (MOFs) CAU-10, Ce-UiO-66, and Al-MIL-53 of idealized composition [Al(OH)(ISO)], [Ce6 O4 (OH)4 (BDC)6 ], and [Al(OH)(BDC)], respectively (ISO2- : isophthalate, BDC2- : terephthalate). Its use allowed the synthesis of Ce-UiO-66 on a gram scale. While CAU-10 and Ce-UiO-66 exhibit properties similar to those reported elsewhere for these two materials, the obtained Al-MIL-53 shows no structural flexibility upon adsorption of hydrophilic or hydrophobic guest molecules such as water and xenon and is stabilized in its large-pore form over a broad temperature range (130-450 K). The stabilization of the large-pore form of Al-MIL-53 was attributed to a high percentage of noncoordinating -COOH groups as determined by solid-state NMR spectroscopy. The defective material shows an unusually high water uptake of 310 mg g-1 within the range of 0.45 to 0.65 p/p°. In spite of showing no breathing effect upon water adsorption it exhibits distinct mechanical properties. Thus, mercury intrusion porosimetry studies revealed that the solid can be reversibly forced to breathe by applying moderate pressures (≈60 MPa).

8.
Chemistry ; 26(30): 6851-6861, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-31944426

RESUMEN

La3 B6 O13 (OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and ß=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2 O6 entities. The compound develops borate layers of "sechser"-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2 O6 entities.

9.
Inorg Chem ; 59(20): 15250-15261, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32993295

RESUMEN

Acetic acid, an alternative green solvent, was utilized for the solvothermal synthesis of four 2D materials of composition [Zr2O2(OAc)2(BDC-F)], [Zr2O2(OAc)2(BDC-F4)], [Zr2O2(OAc)2(BDC)], and [Zr2O2(OAc)2(NDC)] (BDC, terephthalate; BDC-F, 2-fluoroterephthalate; BDC-F4, tetrafluoroterephthalate; NDC, 2,6-naphthalenedicarboxylate). The first three compounds were subsequently reacted with terephthalic acid in solid-state reactions to form porous MIL-140A-type metal-organic frameworks and mixed-linker derivatives ([ZrO(BDC)1-x(BDC-Y)x], x = 0-0.18, Y = F, F4). The reaction kinetics of the formation of MIL-140A were investigated with the aid of time-resolved synchrotron and temperature-resolved in-house X-ray powder diffraction experiments. Thorough compositional analyses and solid-state NMR spectroscopic experiments were used to assess the crystallographic ordering of the different linker molecules. Additionally, acetic acid-based routes for the direct synthesis of MIL-140A-NO2 and a novel MIL-140A-(CH3)2 derivative were discovered.

10.
Phys Chem Chem Phys ; 21(43): 23966-23977, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31642465

RESUMEN

Exploring the reasons for the initiation of Al-O-Al bond formation in alkali-earth alumino silicate glasses is a key topic in the glass-science community. Evidence for the formation of Al-O-Al and Al-NBO bonds in the glass composition 38.7CaO-9.7MgO-12.9Al2O3-38.7SiO2 (CMAS, mol%) has been provided based on Molecular Dynamics (MD) simulations. Analyses in the short-range order confirm that silicon and the majority of aluminium cations form regular tetrahedra. Well-separated homonuclear (Si-O-Si) and heteronuclear (Si-O-Al) cluster regions have been identified. In addition, a channel region (C-Region), separated from the network region, enriched with both NBO and non-framework modifier cations, has also been identified. These findings are in support of the previously proposed extended modified random network (EMRN) model for aluminosilicate glasses. A detailed analysis of the structural distributions revealed that a majority of Al, 51.6%, is found in Si-O-Al links. Although the formation of Al-O-Al and Al-NBO bonds is energetically less favourable, a significant amount of Al is found in Al-O-Al links (33.5%), violating Lowenstein's rule, and the remainder is bonded with non-bridging oxygen (NBO) in the form of Al-NBO (Al-O-(Ca, Mg)). The conditions necessary for the formation of less favourable bonds are attributed to the presence of a high amount of modifier cations in current CMAS glass and their preferable coordination.

11.
J Am Chem Soc ; 140(6): 2135-2144, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29316398

RESUMEN

Understanding host-guest interactions is one of the key requirements for adjusting properties in metal-organic frameworks (MOFs). In particular, systems with coordinatively unsaturated Lewis acidic metal sites feature highly selective adsorption processes. This is attributed to strong interactions with Lewis basic guest molecules. Here we show that a combination of 13C MAS NMR spectroscopy with state-of-the-art density functional theory (DFT) calculations allows one to unravel the interactions of water, 2-aminopyridine, 3-aminopyridine, and diethylamine with the open metal sites in Cr-MIL-101. The 13C MAS NMR spectra, obtained with ultrafast magic-angle spinning, are well resolved, with resonances distributed over 1000 ppm. They present a clear signature for each guest at the open metal sites. Based on competition experiments this leads to the following binding preference: water < diethylamine ≈ 2-aminopyridine < 3-aminopyridine. Assignments were done by exploiting distance sum relations derived from spin-lattice relaxation data and 13C{1H} REDOR spectral editing. The experimental data were used to validate NMR shifts computed for the Cr-MIL-101 derivatives, which contain Cr3O clusters with magnetically coupled metal centers. While both approaches provide an unequivocal assignment and the arrangement of the guests at the open metal sites, the NMR data offer additional information about the guest and framework dynamics. We expect that our strategy has the potential for probing the binding situation of adsorbate mixtures at the open metal sites of MOFs in general and thus accesses the microscopic interaction mechanisms for this important material class, which is essential for deriving structure-property relationships.

12.
Phys Chem Chem Phys ; 20(22): 15098-15105, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29799049

RESUMEN

Proton-containing point defects in solid materials are important for a variety of properties ranging from ionic transport over thermal conductivity up to compressibility. Ultrafast magic-angle spinning techniques nowadays offer high-resolution solid-state NMR spectra, even for 1H, and thus open up possibilities to study the underlying defect chemistry. Nevertheless, disorder within such defects again leads to heavy spectral overlap of 1H resonances, which prevents quantitative analysis of defect concentrations, if several defect types are present. Here, we present a strategy to overcome this limitation by simulating the 1H lineshape as well as 1H-1H double-quantum buildup curves, which we then validate against the experimental data in a joint cost function. To mimic the local structural disorder, we use molecular dynamics simulations at the DFT level. It turned out to be advantageous for the joint refinement to put the computational effort into the structural optimisation to derive accurate proton positions and to use empirical correlations for the relation between isotropic and anisotropic 1H chemical shifts and structural elements. The expressiveness of this approach is demonstrated on ringwoodite's (γ-Mg2SiO4) OH defect chemistry containing four different defect types in octahedral and tetrahedral voids with both pure Mg and mixed Si and Mg cation environments. Still, we determine the ratio for each defect type with an accuracy of about 5% as a result of the minimization of the joint cost function. We expect that our approach is generally applicable for local proton disorder and might prove to be a valuable alternative to the established AIRSS and Monte Carlo methods, respectively.

13.
Angew Chem Int Ed Engl ; 57(49): 16210-16214, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30160346

RESUMEN

Two new chalcogenogallates Cs4 Ga6 Q11 (Q=S, Se) were obtained by a controlled thermal treatment of CsN3 in the presence of stoichiometric amounts of Ga2 Q3 and the elemental chalcogens at elevates temperatures. Both isotypic compounds crystallize in the space group P 1 ‾ (no. 2). The most prominent structural feature in these chalcogenogallates are the complex anionic Dreier double chains 1 ∞ [Ga6 Q11 4- ] formed by condensed GaQ4 tetrahedra. The semiconductors Cs4 Ga6 S11 (Eg =3.14 eV) and Cs4 Ga6 Se11 (Eg =2.41 eV) were further studied by using UV/Vis, 133 Cs and 71 Ga solid-state NMR spectroscopy, and complementary DFT calculations. The 133 Cs MAS NMR spectra are characteristic for cationic cesium and vibrational spectra show two distinct regions, attributed to the Ga-Q valence and deformation vibrations, respectively. High-temperature studies revealed incongruent melting of both solids, which is also depicted in updated binary phase-diagrams Cs2 Q-Ga2 Q3 (Q=S, Se).

14.
Langmuir ; 33(19): 4816-4822, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28452487

RESUMEN

Because of strong Coulomb interactions, the delamination of charged layered materials becomes progressively more difficult with increasing charge density. For instance, highly charged sodium fluorohectorite (Na0.6Mg2.4Li0.6Si4O10F2, Na-Hec) cannot be delaminated directly by osmotic swelling in water because its layer charge exceeds the established limit for osmotic swelling of 0.55 per formula unit Si4O10F2. Quite surprisingly, we found that this hectorite at the border of the smectite and vermiculite group can, however, be utterly delaminated into 1-nm-thick platelets with a high aspect ratio (24 000) in a two-step process. The hectorite is first converted by partial ion exchange into a one-dimensionally ordered, interstratified heterostructure with strictly alternating Na+ and n-butylammonium (C4) interlayers. This heterostructure then spontaneously delaminates into uniform single layers upon immersion in water whereas neither of the homoionic phases (Na-Hec and C4-Hec) swells osmotically. The delamination of more highly charged synthetic layered silicates is a key step to push the aspect ratio beyond the current limits.

15.
Chemistry ; 21(1): 314-23, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25352494

RESUMEN

The resistance of metal-organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al-MIL-101-NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long-term stability of Al-MIL-101-URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al-MIL-101-URPh decomposed at least 12-times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2 O sorption measurements, powder X-ray diffraction, thermogravimetric and chemical analysis as well as solid-state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m(2) g(-1) for Al-MIL-101-URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity-dependent uptake of Al-MIL-101-URPh is slowed and occurs at higher relative humidity values. In combination with (1) H-(27) Al D-HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.


Asunto(s)
Aluminio/química , Complejos de Coordinación/química , Compuestos Organometálicos/química , Agua/química , Complejos de Coordinación/síntesis química , Estructuras Metalorgánicas , Compuestos Organometálicos/síntesis química , Porosidad , Espectrometría por Rayos X , Termogravimetría , Difracción de Rayos X
16.
Solid State Nucl Magn Reson ; 65: 122-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25572924

RESUMEN

We study the efficiency of two symmetry based homonuclear (19)F double-quantum recoupling sequences for moderate (R142(6)) and ultra-fast (R144(5)) MAS under the influence of strong (1)H-(1)H and (1)H-(19)F dipolar interactions and (1)H continuous wave decoupling. Simulations based on various spin systems derived from the organic solid 1,3,5-tris(2-fluoro-2-methylpropionylamino)benzene (F-BTA), used as a model system, reveal that the strong-decoupling limit is not accessible even for moderate spinning speeds. Additionally, for the no-decoupling limit improved DQ efficiencies are predicted for both moderate and ultra-fast MAS. Strong perturbations of build-up curves can be avoided by additional stabilisation through supercycling. Additional (1)H cw decoupling during (19)F recoupling rapidly reduces the maximum DQ efficiency when deviating from the no-decoupling limit. These effects were confirmed by experimental data on F-BTA. For moderate spinning the influence of (1)H-(1)H and (1)H-(19)F couplings is markedly stronger compared to ultra-fast MAS. For the latter case those influences reduce to a constant scaling if only short excitation times up to the first minimum are taken into account. Based on this analysis the experimental build-up curves of 1,3,5-tris(2-fluoro-2-methylpropionylamino)benzene can be refined with homonuclear (19)F spin systems which allow to probe even subtle structural differences for the fluorine atoms of F-BTA.

17.
Langmuir ; 29(2): 643-52, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23240993

RESUMEN

The influence of the layer charge on the microstructure was studied for a series of three hybrid pillared interlayered clays based on the organic dication Me(2)DABCO(2+) and charge reduced synthetic fluorohectorites. To get a detailed picture of the local arrangements within the interlayer space, multinuclear solid-state NMR spectroscopy was performed in conjunction with high-resolution (129)Xe MAS NMR, temperature-dependent wide-line 1D and 2D (129)Xe NMR, and Ar/Ar(l) and Xe/Xe(l) physisorption measurements. The resulting layer charge (x) for the three samples are 0.48, 0.44, and 0.39 per formula unit (pfu). The samples exhibit BET equivalent surfaces between 150 and 220 m(2)/g and pore volumes which increase from 0.06 to 0.11 cm(3)/g while the layer charge reduces. 1D and 2D (1)H, (13)C, (19)F, and (29)Si MAS data reveal that the postsynthetic charge reduction induces regions with higher defect concentrations within the silicate layers. Although the pillars tend to avoid these defect-rich regions, a homogeneous and regular spacing of the Me(2)DABCO(2+) pillars is established. Both the Ar/Ar(l) physisorption and (129)Xe NMR measurements reveal comparable pore dimensions. The trend of the temperature-dependent wide-line (129)Xe spectra as well as the exchange in the EXSY spectra is typical for a narrow 2D pore system. (129)Xe high-resolution experiments allow for a detailed description of the microstructure. For x = 0.48 a bimodal distribution with pore diameters between 5.9 and 6.4 Å is observed. Reducing the layer charge leads to a more homogeneous pore structure with a mean diameter of 6.6 Å (x = 0.39). The adsorption enthalpies ΔH(ads) determined from the temperature-dependent (129)Xe chemical shift data fit well to the ones derived from the Xe/Xe(l) physisorption measurements in the high-pressure limit while the magnitude of ΔH(ads) in the low-pressure limit is significantly larger. Thus, the (129)Xe data are influenced by adsorbate-adsorbent as well as adsorbate-adsorbate interactions.

18.
Nanoscale ; 15(40): 16413-16424, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37791518

RESUMEN

An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect the structure and chemical properties of proteins, for instance. Here, we correlate the results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqueous solution in the presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O with D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance analysis. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions reveal limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments.

19.
Adv Mater ; 35(2): e2208698, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36284487

RESUMEN

A diode requires the combination of p- and n-type semiconductors or at least the defined formation of such areas within a given compound. This is a prerequisite for any IT application, energy conversion technology, and electronic semiconductor devices. Since the discovery of the pnp-switchable compound Ag10 Te4 Br3 in 2009, it is in principle possible to fabricate a diode from a single material without adjusting the semiconduction type by a defined doping level. Often a structural phase transition accompanied by a dynamic change of charge carriers or a charge density wave within certain substructures are responsible for this effect. Unfortunately, the high pnp-switching temperature between 364 and 580 K hinders the application of this phenomenon in convenient devices. This effect is far removed from a suitable operation temperature at ambient conditions. Ag18 Cu3 Te11 Cl3  is a room temperature pnp-switching material and the first single-material position-independent diode. It shows the highest ever reported Seebeck coefficient drop that takes place within a few Kelvin. Combined with its low thermal conductivity, it offers great application potential within an accessible and applicable temperature window. Ag18 Cu3 Te11 Cl3 and pnp-switching materials have the potential for applications and processes where diodes, transistors, or any defined charge separation with junction formation are utilized.

20.
J Am Chem Soc ; 134(1): 71-4, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22118503

RESUMEN

We present an experimental NMR, X-ray diffraction (XRD), and computational study of the supramolecular assemblies of two crystalline forms of Ciprofloxacin: one anhydrate and one hydrate forming water wormholes. The resonance assignment of up to 51 and 54 distinct (13)C and (1)H resonances for the hydrate is reported. The effect of crystal packing, identified by XRD, on the (1)H and (13)C chemical shifts including weak interionic H-bonds, is quantified; (1)H chemical shift changes up to ∼-3.5 ppm for CH···π contacts and ∼+2 ppm (CH···O((-))); ∼+4.7 ppm (((+))NH···O((-))) for H-bonds. Water intake induces chemical shift changes up to 2 and 5 ppm for (1)H and (13)C nuclei, respectively. Such chemical shifts are found to be sensitive detectors of hydration/dehydration in highly insoluble hydrates.


Asunto(s)
Antibacterianos/química , Ciprofloxacina/química , Simulación por Computador , Agua/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA