RESUMEN
PURPOSE: Persistent fatigue and cognitive dysfunction are poorly understood potential long-term effects of adjuvant chemotherapy. In this pilot study, we assessed the value of electroencephalogram (EEG) power measurements as a means to evaluate physical and mental fatigue associated with chemotherapy. PATIENTS AND METHODS: Women planning to undergo adjuvant chemotherapy for breast cancer and healthy controls underwent neurophysiologic assessments at baseline, during the time of chemotherapy treatment, and at 1 year. Repeated measures analysis of variance was used to analyze the data. RESULTS: Compared with controls, patients reported more subjective fatigue at baseline that increased during chemotherapy and did not entirely resolve by 1 year. Performance on endurance testing was similar in patients versus controls at all time points; however, values of EEG power increased after a physical task in patients during chemotherapy but not controls. Compared with controls, subjective mental fatigue was similar for patients at baseline and 1 year but worsened during chemotherapy. Patients performed similarly to controls on formal cognitive testing at all time points, but EEG activity after the cognitive task was increased in patients only during chemotherapy. CONCLUSION: EEG power measurement has the potential to provide a sensitive neurophysiologic correlate of cancer treatment-related fatigue and cognitive dysfunction.