Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 150(4): 792-802, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901809

RESUMEN

The DNA uptake competence (Com) system of the intracellular bacterial pathogen Listeria monocytogenes is considered nonfunctional. There are no known conditions for DNA transformation, and the Com master activator gene, comK, is interrupted by a temperate prophage. Here, we show that the L. monocytogenes Com system is required during infection to promote bacterial escape from macrophage phagosomes in a manner that is independent of DNA uptake. Further, we find that regulation of the Com system relies on the formation of a functional comK gene via prophage excision. Prophage excision is specifically induced during intracellular growth, primarily within phagosomes, yet, in contrast to classic prophage induction, progeny virions are not produced. This study presents the characterization of an active prophage that serves as a genetic switch to modulate the virulence of its bacterial host in the course of infection.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriófagos/fisiología , Listeria/patogenicidad , Listeria/virología , Macrófagos/inmunología , Macrófagos/microbiología , Fagosomas/microbiología , Activación Viral , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Células Cultivadas , Femenino , Listeria/genética , Listeria/inmunología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Alineación de Secuencia
2.
PLoS Genet ; 14(3): e1007283, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29529043

RESUMEN

Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.


Asunto(s)
Aminoácidos de Cadena Ramificada/biosíntesis , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Aminoácidos de Cadena Ramificada/genética , Genes Bacterianos , Isoleucina/biosíntesis , Isoleucina/genética , Listeria monocytogenes/genética , Transcripción Genética , Virulencia
3.
PLoS Pathog ; 13(1): e1006161, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114430

RESUMEN

The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Glutamina/metabolismo , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Virulencia/fisiología , Animales , Western Blotting , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa
4.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28396325

RESUMEN

Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Bacterianas/genética , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Macrófagos/microbiología , Factores de Terminación de Péptidos/genética , Factores de Virulencia/genética , Animales , Femenino , Regulación Bacteriana de la Expresión Génica , Glucofosfatos/metabolismo , Listeria monocytogenes/metabolismo , Listeriosis/microbiología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mutación , ARN Bacteriano/genética , Virulencia/genética
5.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28039138

RESUMEN

Construction of Listeria monocytogenes mutants by allelic exchange has been laborious and time-consuming due to lack of proficient selection markers for the final recombination event, that is, a marker conveying substance sensitivity to the bacteria bearing it, enabling the exclusion of merodiploids and selection for plasmid loss. In order to address this issue, we engineered a counterselection marker based on a mutated phenylalanyl-tRNA synthetase gene (pheS*). This mutation renders the phenylalanine-binding site of the enzyme more promiscuous and allows the binding of the toxic p-chloro-phenylalanine analog (p-Cl-phe) as a substrate. When pheS* is introduced into L. monocytogenes and highly expressed under control of a constitutively active promoter, the bacteria become sensitive to p-Cl-phe supplemented in the medium. This enabled us to utilize pheS* as a negative selection marker and generate a novel, efficient suicide vector for allelic exchange in L. monocytogenes We used this vector to investigate the monocin genomic region in L. monocytogenes strain 10403S by constructing deletion mutants of the region. We have found this region to be active and to cause bacterial lysis upon mitomycin C treatment. The future applications of such an effective counterselection system, which does not require any background genomic alterations, are vast, as it can be modularly used in various selection systems (e.g., genetic screens). We expect this counterselection marker to be a valuable genetic tool in research on L. monocytogenesIMPORTANCEL. monocytogenes is an opportunistic intracellular pathogen and a widely studied model organism. An efficient counterselection marker is a long-standing need in Listeria research for improving the ability to design and perform various genetic manipulations and screening systems for different purposes. We report the construction and utilization of an efficient suicide vector for allelic exchange which can be conjugated, leaves no marker in the bacterial chromosome, and does not require the use of sometimes leaky inducible promoters. This highly efficient genome editing tool for L. monocytogenes will allow for rapid sequential mutagenesis, introduction of point mutations, and design of screening systems. We anticipate that it will be extensively used by the research community and yield novel insights into the diverse fields studied using this model organism.


Asunto(s)
Bacteriocinas/genética , Listeria monocytogenes/genética , Mitomicina/farmacología , Fenilalanina-ARNt Ligasa/genética , Fenilalanina/análogos & derivados , Sitios de Unión/genética , Sitios de Unión/fisiología , Marcadores Genéticos/genética , Listeria monocytogenes/crecimiento & desarrollo , Fenilalanina/metabolismo , Regiones Promotoras Genéticas/genética , Selección Genética/genética , Eliminación de Secuencia/genética
6.
Mol Microbiol ; 95(4): 624-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25430920

RESUMEN

Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Genes Reguladores , Glucofosfatos/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/patogenicidad , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación , Operón , Factores de Terminación de Péptidos/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional , Regulación hacia Arriba , Virulencia/genética
7.
Infect Immun ; 83(6): 2358-68, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824830

RESUMEN

Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Interferón Tipo I/metabolismo , Listeria monocytogenes/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Interferón Tipo I/genética , Interferón beta , Macrófagos , Ratones , Ratones Noqueados , Verapamilo/farmacología
8.
PLoS Genet ; 8(9): e1002887, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22969433

RESUMEN

Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Isoleucina/metabolismo , Listeria monocytogenes/patogenicidad , Macrófagos/microbiología , Proteínas Represoras/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Técnicas de Inactivación de Genes , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , Transcriptoma , Virulencia
9.
Proc Natl Acad Sci U S A ; 109(31): 12473-8, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802625

RESUMEN

Multidrug transporters are integral membrane proteins that use cellular energy to actively extrude antibiotics and other toxic compounds from cells. The multidrug/proton antiporter MdfA from Escherichia coli exchanges monovalent cationic substrates for protons with a stoichiometry of 1, meaning that it translocates only one proton per antiport cycle. This may explain why transport of divalent cationic drugs by MdfA is energetically unfavorable. Remarkably, however, we show that MdfA can be easily converted into a divalent cationic drug/≥ 2 proton-antiporter, either by random mutagenesis or by rational design. The results suggest that exchange of divalent cationi c drugs with two (or more) protons requires an additional acidic residue in the multidrug recognition pocket of MdfA. This outcome further illustrates the exceptional promiscuous capabilities of multidrug transporters.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Protones , Farmacorresistencia Microbiana/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transporte Iónico/fisiología , Proteínas de Transporte de Membrana/genética , Mutagénesis
10.
J Bacteriol ; 195(23): 5262-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056100

RESUMEN

Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Listeria monocytogenes/metabolismo , Chaperonas Moleculares/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Listeria monocytogenes/genética , Listeriosis/microbiología , Hígado/microbiología , Ratones , Bazo/microbiología , Factores de Virulencia/genética
11.
J Bacteriol ; 195(23): 5250-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056102

RESUMEN

The intracellular bacterial pathogen Listeria monocytogenes activates a robust type I interferon response upon infection. This response is partially dependent on the multidrug resistance (MDR) transporter MdrM and relies on cyclic-di-AMP (c-di-AMP) secretion, yet the functions of MdrM and cyclic-di-AMP that lead to this response are unknown. Here we report that it is not MdrM alone but a cohort of MDR transporters that together contribute to type I interferon induction during infection. In a search for a physiological function of these transporters, we revealed that they play a role in cell wall stress responses. A mutant with deletion of four transporter genes (ΔmdrMTAC) was found to be sensitive to sublethal concentrations of vancomycin due to an inability to produce and shed peptidoglycan under this stress. Remarkably, c-di-AMP is involved in this phenotype, as overexpression of the c-di-AMP phosphodiesterase (PdeA) resulted in increased susceptibility of the ΔmdrMTAC mutant to vancomycin, whereas overexpression of the c-di-AMP diadenylate cyclase (DacA) reduced susceptibility to this drug. These observations suggest a physiological association between c-di-AMP and the MDR transporters and support the model that MDR transporters mediate c-di-AMP secretion to regulate peptidoglycan synthesis in response to cell wall stress.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Pared Celular/fisiología , Fosfatos de Dinucleósidos/metabolismo , Interferón Tipo I/metabolismo , Listeria monocytogenes/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Antibacterianos/farmacología , Fosfatos de Dinucleósidos/genética , Farmacorresistencia Bacteriana Múltiple , Regulación Bacteriana de la Expresión Génica/fisiología , Interferón Tipo I/genética , Interferón beta/genética , Interferón beta/metabolismo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Estrés Fisiológico
12.
mBio ; 13(3): e0044822, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35435705

RESUMEN

Listeria monocytogenes is a saprophyte and a human intracellular pathogen. Upon invasion into mammalian cells, it senses multiple metabolic and environmental signals that collectively trigger its transition to the pathogenic state. One of these signals is the tripeptide glutathione, which acts as an allosteric activator of L. monocytogenes's master virulence regulator, PrfA. While glutathione synthesis by L. monocytogenes was shown to be critical for PrfA activation and virulence gene expression, it remains unclear how this tripeptide is synthesized in changing environments, especially in light of the observation that L. monocytogenes is auxotrophic to one of its precursors, cysteine. Here, we show that the ABC transporter TcyKLMN is a cystine/cysteine importer that supplies cysteine for glutathione synthesis, hence mediating the induction of the virulence genes. Further, we demonstrate that this transporter is negatively regulated by three metabolic regulators, CodY, CymR, and CysK, which sense and respond to changing concentrations of branched-chain amino acids (BCAA) and cysteine. The data indicate that under low concentrations of BCAA, TcyKLMN is upregulated, driving the production of glutathione by supplying cysteine, thereby facilitating PrfA activation. These findings provide molecular insight into the coupling of L. monocytogenes metabolism and virulence, connecting BCAA sensing to cysteine uptake and glutathione biosynthesis as a mechanism that controls virulence gene expression. This study exemplifies how bacterial pathogens sense their intracellular environment and exploit essential metabolites as effectors of virulence. IMPORTANCE Bacterial pathogens sense the repertoire of metabolites in the mammalian niche and use this information to shift into the pathogenic state to accomplish a successful infection. Glutathione is a virulence-activating signal that is synthesized by L. monocytogenes during infection of mammalian cells. In this study, we show that cysteine uptake via TcyKLMN drives glutathione synthesis and virulence gene expression. The data emphasize the intimate cross-regulation between metabolism and virulence in bacterial pathogens.


Asunto(s)
Listeria monocytogenes , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Cistina/genética , Cistina/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Glutatión/metabolismo , Humanos , Mamíferos/genética , Proteínas de Transporte de Membrana/metabolismo , Factores de Terminación de Péptidos/metabolismo , Virulencia/genética
13.
Cell Rep ; 39(3): 110723, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443160

RESUMEN

Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome.


Asunto(s)
Bacteriófagos , Listeria monocytogenes , Bacteriófagos/genética , Listeria monocytogenes/genética , Lisogenia , Profagos/genética , Respuesta SOS en Genética
14.
Mol Syst Biol ; 6: 365, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20461072

RESUMEN

Gene regulation differs greatly between related species, constituting a major source of phenotypic diversity. Recent studies characterized extensive differences in the gene expression programs of closely related species. In contrast, virtually nothing is known about the evolution of chromatin structure and how it influences the divergence of gene expression. Here, we compare the genome-wide nucleosome positioning of two closely related yeast species and, by profiling their inter-specific hybrid, trace the genetic basis of the observed differences into mutations affecting the local DNA sequences (cis effects) or the upstream regulators (trans effects). The majority (approximately 70%) of inter-species differences is due to cis effects, leaving a significant contribution (30%) for trans factors. We show that cis effects are well explained by mutations in nucleosome-disfavoring AT-rich sequences, but are not associated with divergence of nucleosome-favoring sequences. Differences in nucleosome positioning propagate to multiple adjacent nucleosomes, supporting the statistical positioning hypothesis, and we provide evidence that nucleosome-free regions, but not the +1 nucleosome, serve as stable border elements. Surprisingly, although we find that differential nucleosome positioning among cell types is strongly correlated with differential expression, this does not seem to be the case for evolutionary changes: divergence of nucleosome positioning is excluded from regulatory elements and is not correlated with gene expression divergence, suggesting a primarily neutral mode of evolution. Our results provide evolutionary insights to the genetic determinants and regulatory function of nucleosome positioning.


Asunto(s)
Secuencia de Bases/genética , Quimera/genética , Nucleosomas/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Secuencia Rica en At/genética , Biología Computacional , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Mutación/genética , Nucleosomas/metabolismo
15.
Mol Syst Biol ; 6: 435, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119629

RESUMEN

Gene expression varies widely between closely related species and strains, yet the genetic basis of most differences is still unknown. Several studies suggested that chromatin regulators have a key role in generating expression diversity, predicting a reduction in the interspecies differences on deletion of genes that influence chromatin structure or modifications. To examine this, we compared the genome-wide expression profiles of two closely related yeast species following the individual deletions of eight chromatin regulators and one transcription factor. In all cases, regulator deletions increased, rather than decreased, the expression differences between the species, revealing hidden genetic variability that was masked in the wild-type backgrounds. This effect was not observed for individual deletions of 11 enzymes involved in central metabolic pathways. The buffered variations were associated with trans differences, as revealed by allele-specific profiling of the interspecific hybrids. Our results support the idea that regulatory proteins serve as capacitors that buffer gene expression against hidden genetic variability.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Expresión Génica/genética , Especiación Genética , Variación Genética/fisiología , Factores de Transcripción/fisiología , Animales , Cromatina/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética , Levaduras/genética , Levaduras/metabolismo
16.
Microorganisms ; 9(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207021

RESUMEN

Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.

17.
Cell Rep ; 32(4): 107956, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726621

RESUMEN

Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.


Asunto(s)
Proteínas Bacterianas/genética , Listeria monocytogenes/metabolismo , Lisogenia/fisiología , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Femenino , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Profagos/genética , Factores de Transcripción/metabolismo , Activación Viral/fisiología
18.
Angew Chem Int Ed Engl ; 48(10): 1834-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19185047

RESUMEN

The silene (Me(3)Si)(2)Si=Ad is polymerized to produce a polycarbosilane with an unusual Si-Si-C repeating backbone, rather than the Si-C or Si-Si-C-C units expected for olefinic radical polymerization. The polymer structure and the polymerization mechanism (see scheme) were studied by GPC, EPR, and NMR spectroscopy and by trapping experiments.

19.
Nat Commun ; 10(1): 5288, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754112

RESUMEN

Bacterial pathogens often carry multiple prophages and other phage-derived elements within their genome, some of which can produce viral particles in response to stress. Listeria monocytogenes 10403S harbors two phage elements in its chromosome, both of which can trigger bacterial lysis under stress: an active prophage (ϕ10403S) that promotes the virulence of its host and can produce infective virions, and a locus encoding phage tail-like bacteriocins. Here, we show that the two phage elements are co-regulated, with the bacteriocin locus controlling the induction of the prophage and thus its activity as a virulence-associated molecular switch. More specifically, a metalloprotease encoded in the bacteriocin locus is upregulated in response to stress and acts as an anti-repressor for CI-like repressors encoded in each phage element. Our results provide molecular insight into the phenomenon of polylysogeny and its intricate adaptation to complex environments.


Asunto(s)
Bacteriófagos/inmunología , Cromosomas Bacterianos/inmunología , Listeria monocytogenes/inmunología , Profagos/inmunología , Secuencia de Aminoácidos , Bacteriocinas/genética , Bacteriocinas/inmunología , Bacteriólisis/inmunología , Bacteriófagos/genética , Bacteriófagos/fisiología , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/virología , Genoma Bacteriano/genética , Genoma Bacteriano/inmunología , Genoma Viral/genética , Genoma Viral/inmunología , Interacciones Huésped-Patógeno/inmunología , Listeria monocytogenes/genética , Listeria monocytogenes/virología , Lisogenia/genética , Lisogenia/inmunología , Metaloproteasas/genética , Metaloproteasas/inmunología , Profagos/genética , Profagos/fisiología , Homología de Secuencia de Aminoácido , Activación Viral/genética , Activación Viral/inmunología
20.
Curr Opin Microbiol ; 38: 81-87, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28544996

RESUMEN

Bacteriophages are ubiquitous and affect most facets of life, from evolution of bacteria, through ecology and global biochemical cycling to human health. The interactions between phages and bacteria often lead to biological novelty and an important milestone in this process is the ability of phages to regulate their host's behavior. In this review article, we will focus on newly reported cases that demonstrate how temperate phages regulate bacterial gene expression and behavior in a variety of bacterial species, pathogenic and environmental. This regulation is mediated by diverse mechanisms such as transcription factors, sRNAs, DNA rearrangements, and even controlled bacterial lysis. The outcome is mutualistic relationships that enable adaptively enhanced communal phage-host fitness under specific conditions.


Asunto(s)
Bacterias/genética , Bacterias/virología , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Parásitos , Lisogenia , Profagos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA