Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 191(1): 575-590, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053186

RESUMEN

Postharvest fungal pathogens benefit from the increased host susceptibility that occurs during fruit ripening. In unripe fruit, pathogens often remain quiescent and unable to cause disease until ripening begins, emerging at this point into destructive necrotrophic lifestyles that quickly result in fruit decay. Here, we demonstrate that one such pathogen, Botrytis cinerea, actively induces ripening processes to facilitate infections and promote disease in tomato (Solanum lycopersicum). Assessments of ripening progression revealed that B. cinerea accelerated external coloration, ethylene production, and softening in unripe fruit, while mRNA sequencing of inoculated unripe fruit confirmed the corresponding upregulation of host genes involved in ripening processes, such as ethylene biosynthesis and cell wall degradation. Furthermore, an enzyme-linked immunosorbent assay (ELISA)-based glycomics technique used to assess fruit cell wall polysaccharides revealed remarkable similarities in the cell wall polysaccharide changes caused by both infections of unripe fruit and ripening of healthy fruit, particularly in the increased accessibility of pectic polysaccharides. Virulence and additional ripening assessment experiments with B. cinerea knockout mutants showed that induction of ripening depends on the ability to infect the host and break down pectin. The B. cinerea double knockout Δbc polygalacturonase1 Δbc polygalacturonase2 lacking two critical pectin degrading enzymes was incapable of emerging from quiescence even long after the fruit had ripened at its own pace, suggesting that the failure to accelerate ripening severely inhibits fungal survival on unripe fruit. These findings demonstrate that active induction of ripening in unripe tomato fruit is an important infection strategy for B. cinerea.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Polisacáridos/metabolismo , Etilenos/metabolismo , Botrytis/fisiología , Pectinas/metabolismo , Pared Celular/metabolismo
2.
J Exp Bot ; 72(7): 2696-2709, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33462583

RESUMEN

The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.


Asunto(s)
Enfermedades de las Plantas , Inmunidad de la Planta , Solanum lycopersicum , Botrytis , Frutas/inmunología , Frutas/microbiología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Sci ; 327: 111558, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493930

RESUMEN

The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot. For that, we performed artificial inoculations with Monilinia laxa at two developmental stages (immature and mature fruit) of two nectarine cultivars ('Venus' -mid-early season cultivar - and 'Albared' -late season cultivar-) and in vitro tests of the key compounds observed in the transcriptional results. All fruit were susceptible to M. laxa except for immature 'Venus' nectarines. In response to the pathogen, the mevalonic acid (MVA) pathway of the 'Venus' cultivar was highly induced in both stages rather than the methylerythritol phosphate (MEP) pathway, being the expression of some MEP-related biosynthetic genes [e.g., PROTEIN FARNESYLTRANSFERASE (PpPFT), and 3S-LINALOOL SYNTHASE (PpLIS)] different between stages. In 'Albared', both stages presented similar responses to M. laxa for both pathways. Comparisons between cultivars showed that HYDROXYMETHYLGLUTARYL-CoA REDUCTASE (PpHMGR1) expression levels were common in susceptible tissues. Within all the terpenoid biosynthetic pathway, linalool- and farnesal-related pathways stood out for being upregulated only in resistant tissues, which suggest their role in mediating the resistance to M. laxa. The in vitro antifungal activity of linalool and farnesol (precursor of farnesal) revealed fungicidal and fungistatic activities against M. laxa, respectively, depending on the concentration tested. Understanding the different responses between resistant and susceptible tissues could be further considered for breeding or developing new strategies to control brown rot in stone fruit.


Asunto(s)
Farnesol , Frutas , Frutas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Técnicas In Vitro
4.
Front Plant Sci ; 12: 647035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986762

RESUMEN

Spontaneous mutations associated with the tomato transcription factors COLORLESS NON-RIPENING (SPL-CNR), NON-RIPENING (NAC-NOR), and RIPENING-INHIBITOR (MADS-RIN) result in fruit that do not undergo the normal hallmarks of ripening but are phenotypically distinguishable. Here, we expanded knowledge of the physiological, molecular, and genetic impacts of the ripening mutations on fruit development beyond ripening. We demonstrated through phenotypic and transcriptome analyses that Cnr fruit exhibit a broad range of developmental defects before the onset of fruit ripening, but fruit still undergo some ripening changes similar to wild type. Thus, Cnr should be considered as a fruit developmental mutant and not just a ripening mutant. Additionally, we showed that some ripening processes occur during senescence in the nor and rin mutant fruit, indicating that while some ripening processes are inhibited in these mutants, others are merely delayed. Through gene expression analysis and direct measurement of hormones, we found that Cnr, nor, and rin have alterations in the metabolism and signaling of plant hormones. Cnr mutants produce more than basal levels of ethylene, while nor and rin accumulate high concentrations of abscisic acid. To determine genetic interactions between the mutations, we created for the first time homozygous double mutants. Phenotypic analyses of the double ripening mutants revealed that Cnr has a strong influence on fruit traits and that combining nor and rin leads to an intermediate ripening mutant phenotype. However, we found that the genetic interactions between the mutations are more complex than anticipated, as the Cnr/nor double mutant fruit has a Cnr phenotype but displayed inhibition of ripening-related gene expression just like nor fruit. Our reevaluation of the Cnr, nor, and rin mutants provides new insights into the utilization of the mutants for studying fruit development and their implications in breeding for tomato fruit quality.

5.
Hortic Res ; 7: 167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082973

RESUMEN

Infections by the fungus Monilinia laxa, the main cause of brown rot in Europe, result in considerable losses of stone fruit. Herein, we present a comprehensive transcriptomic approach to unravel strategies deployed by nectarine fruit and M. laxa during their interaction. We used M. laxa-inoculated immature and mature fruit, which was resistant and susceptible to brown rot, respectively, to perform a dual RNA-Seq analysis. In immature fruit, host responses, pathogen biomass, and pathogen transcriptional activity peaked at 14-24 h post inoculation (hpi), at which point M. laxa appeared to switch its transcriptional response to either quiescence or death. Mature fruit experienced an exponential increase in host and pathogen activity beginning at 6 hpi. Functional analyses in both host and pathogen highlighted differences in stage-dependent strategies. For example, in immature fruit, M. laxa unsuccessfully employed carbohydrate-active enzymes (CAZymes) for penetration, which the fruit was able to combat with tightly regulated hormone responses and an oxidative burst that challenged the pathogen's survival at later time points. In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during the interaction. Hormone analyses of mature fruit infected with M. laxa indicated that, while jasmonic acid activity was likely useful for defense, high ethylene activity may have promoted susceptibility through the induction of ripening processes. Lastly, we identified M. laxa genes that were highly induced in both quiescent and active infections and may serve as targets for control of brown rot.

6.
Front Plant Sci ; 10: 223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881367

RESUMEN

Worldwide, 20-25% of all harvested fruit and vegetables are lost annually in the field and throughout the postharvest supply chain due to rotting by fungal pathogens. Most postharvest pathogens exhibit necrotrophic or saprotrophic lifestyles, resulting in decomposition of the host tissues and loss of marketable commodities. Necrotrophic fungi can readily infect ripe fruit leading to the rapid establishment of disease symptoms. However, these pathogens generally fail to infect unripe fruit or remain quiescent until host conditions stimulate a successful infection. Previous research on infections of fruit has mainly been focused on the host's genetic and physicochemical factors that inhibit or promote disease. Here, we investigated if fruit pathogens can modify their own infection strategies in response to the ripening stage of the host. To test this hypothesis, we profiled global gene expression of three fungal pathogens that display necrotrophic behavior-Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer-during interactions with unripe and ripe tomato fruit. We assembled and functionally annotated the transcriptomes of F. acuminatum and R. stolonifer as no genomic resources were available. Then, we conducted differential gene expression analysis to compare each pathogen during inoculations versus in vitro conditions. Through characterizing patterns of overrepresented pathogenicity and virulence functions (e.g., phytotoxin production, cell wall degradation, and proteolysis) among the differentially expressed genes, we were able to determine shared strategies among the three fungi during infections of compatible (ripe) and incompatible (unripe) fruit tissues. Though each pathogen's strategy differed in the details, interactions with unripe fruit were commonly characterized by an emphasis on the degradation of cell wall components, particularly pectin, while colonization of ripe fruit featured more heavily redox processes, proteolysis, metabolism of simple sugars, and chitin biosynthesis. Furthermore, we determined that the three fungi were unable to infect fruit from the non-ripening (nor) tomato mutant, confirming that to cause disease, these pathogens require the host tissues to undergo specific ripening processes. By enabling a better understanding of fungal necrotrophic infection strategies, we move closer to generating accurate models of fruit diseases and the development of early detection tools and effective management strategies.

7.
Elife ; 72018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30324905

RESUMEN

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.


Asunto(s)
Evolución Molecular , Luciérnagas/genética , Luciferasas de Luciérnaga/genética , Proteínas Luminiscentes/genética , Animales , Escarabajos/enzimología , Escarabajos/genética , Luciérnagas/enzimología , Genoma de los Insectos/genética , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA