Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Arch Pharm (Weinheim) ; 357(5): e2300725, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346258

RESUMEN

Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.


Asunto(s)
Antibacterianos , Antineoplásicos , Antioxidantes , Hidrazonas , Pruebas de Sensibilidad Microbiana , Humanos , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Células HCT116 , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Relación Dosis-Respuesta a Droga
2.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008914

RESUMEN

Free radicals often interact with vital proteins, violating their structure and inhibiting their activity. In previous studies, synthesis, characterisation, and the antioxidative properties of the five different coumarin derivatives have been investigated. In the tests of potential toxicity, all compounds exhibited low toxicity with significant antioxidative potential at the same time. In this paper, the radical scavenging activity of the abovementioned coumarin derivatives towards ten different radical species was investigated. It was found that all investigated compounds show good radical scavenging ability, with results that are in correlation with the results published in the previous study. Three additional mechanisms of radical scavenging activity were investigated. It was found that all three mechanisms are thermodynamically plausible and in competition. Interestingly, it was found that products of the Double Hydrogen Atom Transfer (DHAT) mechanism, a biradical species in triplet spin state, are in some cases more stable than singlet spin state analogues. This unexpected trend can be explained by spin delocalisation over the hydrazide bridge and phenolic part of the molecule with a low probability of spin pairing. Besides radical-scavenging activity, the pharmacokinetic and drug-likeness of the coumarin hybrids were investigated. It was found that they exhibit good membrane and skin permeability and potential interactions with P-450 enzymes. Furthermore, it was found that investigated compounds satisfy all criteria of the drug-likeness tests, suggesting they possess a good preference for being used as potential drugs.


Asunto(s)
Cumarinas/farmacología , Cumarinas/farmacocinética , Depuradores de Radicales Libres/farmacología , Hidrazinas/farmacología , Hidrazinas/farmacocinética , Cumarinas/química , Hidrazinas/química , Modelos Moleculares , Conformación Molecular , Termodinámica
3.
Bioorg Chem ; 80: 741-752, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30077781

RESUMEN

Dicoumarol derivatives were synthesized in the InCl3 catalyzed pseudo three-component reactions of 4-hydroxycoumarin with aromatic aldehydes in excellent yields. The reactions were performed in water under microwave irradiation. All synthesized compounds were characterized using NMR, IR, and UV-Vis spectroscopy, as well as with TD-DFT. Obtained dicoumarols were subjected to evaluation of their in vitro lipid peroxidation and soybean lipoxygenase inhibition activities. It was shown that five of ten examined compounds (3e, 3h, 3b, 3d, 3f) possess significant potential of antilipid peroxidation (84-97%), and that compounds 3b, 3e, 3h provided the highest soybean lipoxygenase (LOX-Ib) inhibition (IC50 = 52.5 µM) and 3i somewhat lower activity (IC50 = 55.5 µM). The bioactive conformations of the best LOX-Ib inhibitors were obtained by means of molecular docking and molecular dynamics. It was shown that, within the bioactive conformations interior to LOX-Ib active site, the most active compounds form the pyramidal structure made of two 4-hydroxycoumarin cores and a central phenyl substituent. This form serves as a spatial barrier which prevents LOX-Ib Fe2+/Fe3+ ion activity to generate the coordinative bond with the C13 hydroxyl group of the α-linoleate. It is worth pointing out that the most active compounds 3b, 3e, 3h and 3i can be candidates for further examination of their in vitro and in vivo anti-inflammatory activity and that molecular modeling study results provide possibility to screen bioactive conformations and elucidate the mechanism of dicoumarols anti-LOX activity.


Asunto(s)
Dicumarol/análogos & derivados , Dicumarol/farmacología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Dicumarol/síntesis química , Diseño de Fármacos , Tecnología Química Verde , Peroxidación de Lípido/efectos de los fármacos , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/síntesis química , Simulación del Acoplamiento Molecular , Glycine max/enzimología , Relación Estructura-Actividad
4.
Sci Total Environ ; 912: 169307, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128658

RESUMEN

Pharmaceutical and industrial utilization of synthetic chemicals has an immerse impact on the environment. In that sense, novel chemicals with potential for industrial application should be investigated for their behaviour in reactions with hydroxyl radical, simulating AOPs (Advanced Oxidation Processes). AOPs are known for being highly effective in wastewater management and natural water remediation. In this paper, exhaustive research on the radical scavenging activity of a newly synthesized coumarin derivative (4HCBH), as a representative of the series of coumarin-benzohydrazides with high antioxidative potential was conducted. This study took into consideration the pH value range significant for practically all living organisms (pH = 7.0-8.5). According to the experimentally obtained results, the 4HCBH showed an increase in radical scavenging activity, following the slight increase in pH values, which suggested that the formation of anionic form of 4HCBH is responsible for its antiradical activity. Further investigations led to the postulation of a novel mechanistic approach called Sequential Proton Loss Electron Transfer - Radical-Radical Coupling (SPLET-RRC), in which, by a series of steps, a new, stable compound was formed. Furthermore, it was demonstrated that the product generated through SPLET-RRC showed lower toxicity than the parent molecule.


Asunto(s)
Antioxidantes , Protones , Antioxidantes/química , Oxidación-Reducción , Transporte de Electrón , Aguas Residuales , Radical Hidroxilo
5.
Antioxidants (Basel) ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397741

RESUMEN

As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin-trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO• was assessed by EPR spectroscopy. The standard mechanisms of antioxidant action, Hydrogen Atom Transfer (HAT), Sequential Proton Loss followed by Electron Transfer (SPLET), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Radical Adduct/Coupling Formation (RAF/RCF) were examined using the QM-ORSA methodology. It was estimated that the newly synthesized compounds, under physiological conditions, exhibited antiradical activity via SPLET and RCF mechanisms. Based on the estimated overall rate constants (koverall), it can be concluded that 2 exhibited a greater antiradical capacity. The obtained values indicated a good correlation with the EPR spectroscopy results. Both compounds exhibit approximately 1.5 times more activity in comparison to the precursor compound used in the synthesis (gallic acid).

6.
RSC Adv ; 14(7): 4591-4606, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38318620

RESUMEN

This research explores the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) derived from acetone (AgNPs-acetone) and aqueous (AgNPs-H2O) extracts of Agrimonia eupatoria. The nanoparticles exhibit isometric morphology and uniform size distribution, as elucidated through Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analyses. The utilization of Scanning Transmission Microscopy (STEM) with High-Angle Annular Dark-Field (HAADF) imaging and energy dispersive spectrometry (EDS) confirms the crystalline nature of AgNPs. Fourier Transform Infrared (FTIR) analysis reveals identical functional groups in the plant extracts and their corresponding AgNPs, suggesting the involvement of phytochemicals in the reduction of silver ions. Spectrophotometric monitoring of the synthesis process, influenced by various parameters, provides insights into the kinetics and optimal conditions for AgNP formation. The antioxidant activities of the plant extracts and synthesized AgNPs are evaluated through DPPH and ABTS methods, highlighting AgNPs-acetone as a potent antioxidant. Third-instar larvae exposed to the extracts have differential effects on DNA damage, with the acetone extract demonstrating antigenotoxic properties. Similarly, biosynthesized AgNPs-acetone displays antigenotoxic effects against EMS-induced DNA damage. The genotoxic effect of water extract and AgNPs-acetone was dose-dependent. Hemolytic potential is assessed on rat erythrocytes, revealing that low concentrations of AgNPs-acetone and AgNPs-H2O had a nontoxic effect on erythrocytes. Cytotoxicity assays demonstrate time-dependent and dose-dependent effects, with AgNPs-acetone exhibiting superior cytotoxicity. Proapoptotic activity is confirmed through apoptosis induction, emphasizing the potential therapeutic applications of AgNPs. The antimicrobial activity of AgNPs reveals concentration-dependent effects. AgNPs-H2O display better antibacterial activity, while antifungal activities are comparable between the two nanoparticle types.

7.
RSC Adv ; 13(5): 2884-2895, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756409

RESUMEN

The pyrazolone class comprises a variety of hybrid compounds displaying diverse biological actions. Although studied for decades, these compounds are still of interest due to their facile chemical transformations. In our previous work, we presented the synthetic route of functionalised pyrazolone derivatives. The presence of pyrazolone structural motif in many drugs, such as edaravone, prompted us to investigate the antioxidant features of the selected compounds. In this paper, we provide an extensive in vitro and in silico description of the antioxidant properties of selected pyrazolone analogues. The obtained in vitro results revealed their great antiradical potency against the DPPH radical (IC50 values in the 2.6-7.8 µM range), where the best results were obtained for analogues bearing a catechol moiety. Density functional theory (DFT) was used to assess their antioxidant capacity from the thermodynamic aspect. Here, good agreement with in vitro results was achieved. DFT was employed for the prediction of the most preferable radical scavenging pathway, also. In polar solvents, the SPLET mechanism is a favourable scavenging route, whereas in nonpolar solvents the HAT is slightly predominant. Furthermore, antioxidant mechanisms were studied in the presence of relevant reactive oxygen species. The obtained values of the reaction enthalpies with the selected radicals revealed that HAT is slightly prevailing in polar solvents, while the SPLET mechanism is dominant in nonpolar solvents. Regarding the well-known antioxidant features of the drug edaravone, these findings represent valuable data for this pyrazolone class and could be used as the basis for further investigations.

8.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891938

RESUMEN

Coumarin N-acylhydrazone derivatives were synthesized in the reaction of 3-acetylcoumarin and different benzohydrazides in the presence of molecular iodine as catalyst and at room temperature. All reactions were rapidly completed, and products were obtained in good to excellent yields. It is important to emphasize that four products were reported for the first time in this study. The obtained compounds were subjected to evaluation of their in vitro antioxidative activity using DPPH, ABTS, and FRAP methods. It was shown that products with a catechol moiety in their structure are the most potent antioxidant agents. The thermodynamic parameters and Gibbs free energies of reactions were used to determine the most probable mechanism of action. The results of in silico examination emphasize the need to take solvent polarity and free radical species into account when examining antiradical action. It was discovered by using computational approaches that HAT and SPLET are competitive molecular pathways for the radical scavenging activity of all compounds in polar mediums, while the HAT is the dominant mechanism in non-polar environments.

9.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136190

RESUMEN

In this study, green synthesis of two derivatives of coumarin-hydroxybenzohydrazide, (E)-2,4-dioxo-3-(1-(2-(2,3,4-trihydroxybenzoyl)hydrazyl)ethylidene)-chroman-7-yl acetate (C-HB1), and (E)-2,4-dioxo-3-(1-(2-(3,4,5-trihydroxybenzoyl)hydrazyl)ethylidene)chroman-7-yl acetate (C-HB2) is reported. Using vinegar and ethanol as a catalyst and solvent, the reactions were carried out between 3-acetyl-4-hydroxy-coumarin acetate and corresponding trihydroxybenzoyl hydrazide. The antioxidant potential of these compounds was investigated using the DPPH and ABTS assays, as well as the FRAP test. The obtained results reveal that even at very low concentrations, these compounds show excellent radical scavenging potential. The IC50 values for C-HB1 and C-HB2 in relation to the DPPH radical are 6.4 and 2.5 µM, respectively, while they are 4.5 and 2.0 µM in relation to the ABTS radical. These compounds have antioxidant activity that is comparable to well-known antioxidants such as gallic acid, NDGA, and trolox. These results are in good correlation with theoretical parameters describing these reactions. Moreover, it was found that inhibition of DPPH● follows HAT, while inactivation of ABTS+● follows SET-PT and HAT mechanisms. Additionally, coumarin-hydroxybenzohydrazide derivatives induced moderate cytotoxic activity and show significant potential to modulate redox status in HCT-116 colorectal cancer cells. The cytotoxicity was achieved via their prooxidative activity and ability to induce oxidative stress in cancer cells by increasing O2˙- concentrations, indicated by increased MDA and GSH levels. Thus, ROS manipulation can be a potential target for cancer therapies by coumarins, as cancer cells possess an altered redox balance in comparison to normal cells. According to the ADMET analysis, the compounds investigated show good pharmacokinetic and toxicological profiles similar to vitamin C and gallic acid, which makes them good candidates for application in various fields of industry and medicine.

10.
RSC Adv ; 12(25): 16054-16070, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35733695

RESUMEN

Coronavirus outbreak is still a major public health concern. The high mutation ability of SARS-CoV-2 periodically delivers more transmissible and dangerous variants. Hence, the necessity for an efficient and inexpensive antiviral agent is urgent. In this work, pyrazolone-type compounds were synthesised, characterised using spectroscopic methods and theoretical tools, and evaluated in silico against proteins of SARS-CoV-2 responsible for host cell entry and reproduction processes, i.e., spike protein (S), Mpro, and PLpro. Five of twenty compounds are newly synthesised. In addition, the crystal structure of a pyrazolone derivative bearing a vanillin moiety is determined. The obtained in silico results indicate a more favourable binding affinity of pyrazolone analogues towards Mpro, and PLpro in comparison to drugs lopinavir, remdesivir, chloroquine, and favipiravir, while in the case of S protein only lopinavir exerted higher binding affinity. Also, the investigations were performed on ACE2 and the spike RBD-ACE2 complex. The obtained results for these proteins suggest that selected compounds could express antiviral properties by blocking the binding to the host cell and viral spreading, also. Moreover, several derivatives expressed multitarget antiviral action, blocking both binding and reproduction processes. Additionally, in silico ADME/T calculations predicted favourable features of the synthesised compounds, i.e., drug-likeness, oral bioavailability, as well as good pharmacokinetic parameters related to absorption, metabolism, and toxicity. The obtained results imply the great potential of synthesised pyrazolones as multitarget agents against SARS-CoV-2 and represent a valuable background for further in vitro investigations.

11.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36678546

RESUMEN

Two newly synthesized coumarin-palladium(II) complexes (C1 and C2) were characterized using elemental analysis, spectroscopy (IR and 1H-13C NMR), and DFT methods at the B3LYP-D3BJ/6-311+G(d,p) level of theory. The in vitro and in silico cytotoxicity of coumarin ligands and their corresponding Pd(II) complexes was examined. For in vitro testing, five cell lines were selected, namely human cervical adenocarcinoma (HeLa), the melanoma cell line (FemX), epithelial lung carcinoma (A549), the somatic umbilical vein endothelial cell line (EA.hi926), and pancreatic ductal adenocarcinoma (Panc-1). In order to examine the in silico inhibitory potential and estimate inhibitory constants and binding energies, molecular docking studies were performed. The inhibitory activity of C1 and C2 was investigated towards epidermal growth factor receptor (EGFR), receptor tyrosine kinase (RTK), and B-cell lymphoma 2 (BCL-2). According to the results obtained from the molecular docking simulations, the inhibitory activity of the investigated complexes towards all the investigated proteins is equivalent or superior in comparison with current therapeutical options. Moreover, because of the low binding energies and the high correlation rate with experimentally obtained results, it was shown that, out of the three, the inhibition of RTK is the most probable mechanism of the cytotoxic activity of the investigated compounds.

12.
R Soc Open Sci ; 9(6): 211853, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706666

RESUMEN

Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.

13.
Med Chem ; 17(8): 807-819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32484771

RESUMEN

BACKGROUND: From the point of view of medicinal chemistry, compounds containing phenolic and pyrazolic moiety are significant since they are often constituents of bioactive compounds. OBJECTIVE: The aims of this study were to synthesize pyrazole derivatives of medically relevant phenolic acids, confirm their structure, and evaluate their antioxidative and anti-LOX activities. METHODS: Phenolic pyrazole derivatives were obtained, starting from esters of medically relevant phenolic acids. The structures of all obtained compounds were determined by NMR and IR spectroscopy, and UV-Vis spectrophotometry. In addition, the single-crystal X-ray diffraction was used. Pyrazole derivatives were tested for their in vitro antioxidative (DPPH assay), and lipoxygenase (LOX) inhibitory activities. Radical quenching mechanism was estimated using DFT and thermodynamic approach, while molecular docking was used to estimate the binding mode within the enzyme. RESULTS: Pyrazole derivatives were obtained in high yields. The crystal structure of a new compound 3e was determined. Pyrazole derivative with catechol moiety 3d exhibited excellent radical scavenging activity, while compound 3b exhibited the best anti-LOX activity. Molecular docking study revealed that there is no direct interaction of any ligand with the active site of LOX-Ib, but pyrazoles 3a-e behave as inhibitors blocking the approach of linoleic acid to the active site. CONCLUSION: In this research, protocatechuic and vanillic acid pyrazole derivatives have been obtained for the first time. In vitro antioxidative assay suggests that pyrazole derivate of protocatechuic acid is a powerful radical scavenger, while anti-LOX assay indicates a pyrazole derivative with 4-hydroxyphenyl moiety.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Hidroxibenzoatos/química , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Antioxidantes/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Ligandos , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Pirazoles/metabolismo , Relación Estructura-Actividad
14.
Antioxidants (Basel) ; 10(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34356339

RESUMEN

Compounds from the plant world that possess antioxidant abilities are of special importance for the food and pharmaceutical industry. Coumarins are a large, widely distributed group of natural compounds, usually found in plants, often with good antioxidant capacity. The coumarin-hydroxybenzohydrazide derivatives were synthesized using a green, one-pot protocol. This procedure includes the use of an environmentally benign mixture (vinegar and ethanol) as a catalyst and solvent, as well as very easy isolation of the desired products. The obtained compounds were structurally characterized by IR and NMR spectroscopy. The purity of all compounds was determined by HPLC and by elemental microanalysis. In addition, these compounds were evaluated for their in vitro antioxidant activity. Mechanisms of antioxidative activity were theoretically investigated by the density functional theory approach and the calculated values of various thermodynamic parameters, such as bond dissociation enthalpy, proton affinity, frontier molecular orbitals, and ionization potential. In silico calculations indicated that hydrogen atom transfer and sequential proton loss-electron transfer reaction mechanisms are probable, in non-polar and polar solvents respectively. Additionally, it was found that the single-electron transfer followed by proton transfer was not an operative mechanism in either solvent. The conducted tests indicate the excellent antioxidant activity, as well as the low potential toxicity, of the investigated compounds, which makes them good candidates for potential use in food chemistry.

15.
Bioorg Chem ; 37(5): 162-6, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19679328

RESUMEN

The reaction of PdCl(2) with diethanolammonium chloride (DEAxHCl), in the molar ratio 1:2, affords the [HDEA](2)[PdCl(4)] complex (1). The hydrolytic activity of the novel Pd(II) complex 1 was tested in reaction with N-acetylated L-histidylglycine dipeptide (AcHis-Gly). Complex 1, as well as earlier prepared trans-[PdCl(2)(DEA)(2)] complex (2), and DEA, as their precursor, were tested for their in vitro free radical scavenging activity. UV absorbance-based enzyme assays were done in order to evaluate their inhibitory activity of soybean lipoxygenase (LOX). Also, assays with superoxide anion radical were done. The scavenging activities of the complexes were measured and compared with those of their precursors and caffeic acid. Complex 2 exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean LOX.


Asunto(s)
Etanolaminas/química , Glycine max/química , Inhibidores de la Lipooxigenasa/química , Metaloproteasas/química , Modelos Moleculares , Paladio/química , Péptidos/química
16.
R Soc Open Sci ; 5(11): 181232, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30564412

RESUMEN

Three-component Mannich reaction of acetophenone or 4-iodoacetophenone with a variety of substituted anilines and benzaldehyde, catalysed with diethanolammonium chloroacetate, was performed under mild conditions. Mannich bases (MBs), of which five are new, were obtained in good to excellent yields. All compounds were characterized using elemental analysis, NMR and IR. In addition, detailed experimental and simulated UV-Vis spectral characterization of these compounds is presented here for the first time. In vitro antioxidative potential of synthetized MBs was evaluated using 2,2-diphenyl-1-picryl-hydrazyl radical and density functional theory (DFT) thermodynamical study. It was shown that compounds with anisidine moiety express moderate antioxidative activity. Mechanism of the organocatalysed Mannich reaction was thoroughly inspected by means of DFT. The reaction undergoes the hydrogen bonding-assisted mechanism. Moreover, the proposed rate determining step of the overall reaction is water elimination in the process of iminium ion formation. To the extent of our knowledge, this is the first detailed report on the influence of this type of catalyst on the formation of iminium ion, as a crucial intermediate for the whole reaction.

17.
RSC Adv ; 8(30): 16663-16673, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35540516

RESUMEN

Pyrazolyl-phthalazine-dione derivatives (PPDs) were synthetized in the ionic liquid catalyzed one-pot multicomponent reaction of acetylacetone, 2,3-dihydrophthalazine-1,4-dione, and different aldehydes in moderate to good yields. Six new PPDs were obtained, and the crystal structure of 2-acetyl-1-(4-fluorophenyl)-3-methyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-4) was determined. The most interesting structural features of the novel PPD-4 is the formation of a rather short intermolecular distance between the F atom of one molecule and the midpoint of the neighbouring six-membered heterocyclic ring. This interaction arranges all molecules into parallel supramolecular chains. UV-Vis spectra of all PPDs were acquired and compared to the simulated ones obtained with TD-DFT. All synthetized compounds were subjected to evaluation of their in vitro antioxidative activity using a stable DPPH radical. It was shown that PPD-7, with a catechol motive, is the most active antioxidant, while PPD-9, with two neighbouring methoxy groups to the phenolic OH, exerted a somewhat lower, but significant antioxidative potential. The results of DFT thermodynamical study are in agreement with experimental findings that PPD-7 and PPD-9 should be considered as powerful radical scavengers. In addition, the obtained theoretical results (bond dissociation and proton abstraction energies) specify SPLET as a prevailing radical scavenging mechanism in polar solvents, and HAT in solvents with lower polarity. On the other hand, the obtained reaction enthalpies for inactivation of free radicals suggest competition between HAT and SPLET mechanisms, except in the case of the ˙OH radical in polar solvents, where HAT is labeled as prefered.

18.
J Mol Model ; 21(11): 293, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26508294

RESUMEN

The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.


Asunto(s)
Antioxidantes/química , Depuradores de Radicales Libres/química , Radicales Libres/química , Fenoles/química , Bases de Schiff/química , Transporte de Electrón , Estructura Molecular , Oxidación-Reducción , Relación Estructura-Actividad Cuantitativa , Termodinámica
19.
J Mol Model ; 18(2): 433-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21537961

RESUMEN

An efficient green Heck reaction protocol was performed using a triethanolammonium acetate ionic liquid-palladium(II) catalytic system. The ionic liquid used acts as a reaction medium, base, precatalyst-precursor, and mobile support for the active Pd species. Our experimental investigation indicates that performing the Heck reaction in ionic liquid is superior to the same procedure carried out in triethanolamine. The mechanism of the reaction of triethanolammonium acetate with PdCl(2) was examined using density functional theory (M06 method). It was found that two Pd(II) complexes are formed, one of which acts further as a precatalyst yielding catalytically active Pd(0) complex. The calculated activation energies are in agreement with our experimental findings.


Asunto(s)
Etanolaminas/química , Líquidos Iónicos/química , Paladio/química , Conformación de Carbohidratos , Catálisis , Modelos Moleculares
20.
Med Chem ; 8(1): 9-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22420545

RESUMEN

Taken into consideration limited data about effects of palladium on cardiovascular system, the aim of our study was to compare toxicity of inorganic and organic palladium compounds on the isolated rat heart. The hearts (total number n=30, 6 for each experimental group) excised from Wistar albino rats, male sex, age 8 weeks, and body mass 180-200 g, were retrogradely perfused according to the Langendorff technique at constant perfusion pressure (70 cm H2O). After the insertion of sensor in the left ventricle, the parameters of heart function: maximum rate of left ventricular pressure development (dP/dt max), systolic left ventricular pressure (SLVP), diastolic left ventricular pressure (DLVP), mean blood pressure (MBP) and heart rate (HR)), were continuously registered. The experiments were performed during control conditions, and in the presence of perfusion with incresing concentration of the following: (triethanolamine (TEA), triethanolamine acetate (TEAA), palladium(II)chloride (PdCl2), and trans-dichlorobis(triethanolamine-N)palladium(II) complex (trans-[PdCl2(TEA)2])) started every 30 minutes (30, 60, 90, 120 minute). dP/dt max was not affected significantly by either TEAA, TEA, PdCl2 or Pd complex. SLVP was, also, not affected significantly by either TEAA, TEA, PdCl2, or Pd complex. DLVP was significantly decreased by both TEAA and PdCl2, while TEA and Pd complex did not show significant effect. MBP was significantly decreased only by PdCl2, while TEAA, TEA and Pd complex did not show significant effect. HR was significantly decreased by all compounds- PdCl2, TEAA, TEA and Pd complex. In our study, inorganic palladium compound (PdCl2) induced clear depression of the isolated rat heart contractility, manifested as drop in diastolic and mean blood pressure , and as decrease of the heart rate. On the other hand, it seems that palladium, when bound in an organic compound (linked to TEA in Pd complex), does not contribute significantly to cardio-toxicity in our experimental conditions.


Asunto(s)
Corazón/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Paladio/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Masculino , Compuestos Organometálicos/química , Paladio/química , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA