Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731491

RESUMEN

Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.


Asunto(s)
Nepeta , Estaciones del Año , Nepeta/química , Cromatografía Líquida de Alta Presión , Fitoquímicos/química , Fitoquímicos/análisis , Flavonoides/análisis , Flavonoides/química , Monoterpenos Ciclopentánicos , Semillas/química , Semillas/crecimiento & desarrollo , Extractos Vegetales/química , Iridoides/química , Pironas
2.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838778

RESUMEN

Kinkéliba (Combretum micranthum, Seh-Haw in Wolof) is a popular bush tea in West African countries. Although the kinkéliba plant's leaves have been widely consumed for its nutritional and medicinal properties, its benefits on skin health potential have been practically untouched. In human epidermal primary keratinocytes, vitexin and isovitexin-rich kinkéliba extract treatment significantly (p < 0.001) enhanced up to 39.6% of the cell survival rate decreased by UV radiation irritation. The treatment of kinkéliba leaf extracts also reduced the production of UV-induced pro-inflammatory cytokines IL-6 and IL-8 by 57.6% and 42.5%, respectively (p < 0.001), which cause skin redness and skin barrier dysfunction, as well as wrinkles and collagen degradation. The anti-inflammation efficacy of kinkéliba leaf extracts might involve significant inhibition on the levels of cellular reactive oxygen species (ROS) (-70.8%, p < 0.001) and nitrotyrosine (-56.9%, p < 0.05). Further topical applications of kinkéliba leaf extract gel were found to reduce sodium lauryl sulfate (SLS)-induced skin inflammation: at D7, the skin trans-epidermal water loss (TEWL) and skin redness (a* value) were both reduced by 59.81% (p < 0.001) and 22.4% (p < 0.001), compared with D0. In vitro and in vivo data support a new topical application of the kinkéliba leaf as an effective active ingredient for the treatment of skin inflammation, as well as subsequent barrier dysfunction and inflammaging.


Asunto(s)
Combretum , Dermatitis , Humanos , Extractos Vegetales/farmacología , Piel , Queratinocitos
3.
Plant Dis ; 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130039

RESUMEN

In December 2019, New Jersey became one of the first states to have its industrial hemp (Cannabis sativa L.) plan approved by the U.S. Department of Agriculture (USDA) following enactment of the 2018 Farm Bill that authorized the production of hemp. Following this approval, hemp was legally grown for the first time in 2020. During the growing seasons of 2020 and 2021, powdery mildew-like symptoms were observed during the summer months (Jun to Aug) in greenhouse hemp research and fall months (Aug to Oct) in field production plots on Rutgers Agricultural Experiment Station farms in southern and northern New Jersey. Symptoms were observed on leaves and stems of hemp cultivars 'CB Genius', 'Cherry Wine' and 'Bay Mist'. Symptoms initially appeared as small white patches of mycelia and conidia on the adaxial surface of leaves that gradually spread to entire leaves and stems. Leaf discoloration (e.g., chlorosis) and premature leaf drop were observed. More severe symptoms and damage were observed in the greenhouse than outdoor cultivation. A voucher specimen was deposited in the U.S National Fungus Collections, USDA-ARS, Beltsville, MD (accession number 929187). Morphological examination of the white colonies from the cultivar 'Baymist' was carried out using light microscopy and further characterized by sequencing. This isolate was labelled PMH2. Hyphae were septate, conidiophores were hyaline, unbranched, measuring 130 to 240 µm in length and produced 1 to 4 conidia in chains. Conidia were hyaline, ellipsoid to ovoid in shape and measured 20 to 36 ×10 to 18 µm (n=30). Oil-like drops were present within conidia, although no distinct fibrosin bodies were observed. Chasmothecia were not observed. Morphological observations were consistent with those of Golovinomyces spp. as described by Braun and Cook (2012). Morphological observations (conidiophore and conidial measurements) were also similar to the description of G. ambrosiae on Hemp, as described in Wiseman et al, 2021. Sequencing of internal transcribed spacer (ITS), large ribosomal subunit (28S), intergenic spacer (IGS), beta- tubulin (TUB2) and chitin synthase 1(CHS1) region, were carried out with the primer sets ITS5/ITS4, LSU1/LSU2, IGS-12a/NS1R, TubF1/TubR1 and gCS1a1/gCS1b respectively, as shown by Qiu et al. (2020). Maximum-likelihood phylogenetic analysis confirmed the grouping of the PMH2 isolate within the G. ambrosiae accessions. Each individual gene alignment was treated as a separate partition. Sequences were not concatenated for maximum -likelihood phylogenetic analysis. Sequence data were deposited in GenBank under the accessions OK626453 (ITS), OK626454 (28S), OL456201 (IGS), OL415512 (TUB2) and OL415513(CHS1). To fulfill Koch's postulates, two mature, potted plants of C. sativa cv. 'Alpha Explorer' were inoculated by gently pressing symptomatic hemp leaves onto their leaf surface. They were incubated in an indoor grow room at 23°C and relative humidity of 50%. Non-inoculated healthy plants of C. sativa cv. 'Alpha Explorer' served as control. Inoculated plants developed powdery mildew symptoms within 10 to 12 days, while all control plants were asymptomatic. The powdery mildew on inoculated plants was found to be morphologically similar to the original. G. ambrosiae has been reported on C.sativa in Oregon (Wiseman et al. 2021) and G. ambrosiae (as G. spadiceus) has been reported on Cannabis in Kentucky (Szarka et al. 2019), Ohio (Farinas and Hand 2020) and New York (Weldon et al. 2020). This is the first known report of Golovinomyces ambrosiae causing powdery mildew on hemp in New Jersey. With the recent opening ( Dec15, 2021) of cultivation licensing and retailing of recreational marijuana, the acreage of Hemp production in New Jersey is expected to significantly increase, particularly for greenhouse production. It is important to document the species to develop management strategies to control this disease.

4.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296649

RESUMEN

Catnip (Nepeta cataria L.) is of scientific interest largely due to the production of nepetalactones, volatile iridoid terpenes with strong arthropod repellent activity. However, the plant can also produce other bioactive volatile iridoids, such as nepetalic acid (NA), nepetalactam (NT) and dihydronepetalactone (DHNL) that have not been studied extensively. Germplasm studies on plants that can produce such compounds are scarce. The present study evaluated the chemical diversity of catnip genotypes with a focus on NA, NT and DHNL. A total of 34 genotypes were harvested at different times over two years. The ethanolic extract of the plants was screened for iridoids by ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. CR9 × CR3 genotype had the highest value for biomass yield, while cultivar CR9 had the highest value for accumulated NA. Genotype UK.2 had the highest value for accumulated NT yield and CR5 had the highest value for accumulated DHNL. Overall, patented cultivars and elite selections performed better than other less studied genotypes. Harvest time influenced the accumulation of secondary metabolites differentially for the genotypes. This is the first germplasm study with a focus on these iridoid compounds, yet more studies are necessary as genotype characterization is essential for breeding and standardization of products for industry.


Asunto(s)
Nepeta , Aceites Volátiles , Nepeta/genética , Nepeta/química , Terpenos , Iridoides , Fitomejoramiento , Extractos Vegetales/química , Genotipo , Aceites Volátiles/química
5.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299083

RESUMEN

Dihydromyricetin is a natural bioactive flavonoid with unique GABAA receptor activity with a putative mechanism of action to reduce the intoxication effects of ethanol. Although dihydromyricetin's poor oral bioavailability limits clinical utility, the promise of this mechanism for the treatment of alcohol use disorder warrants further investigation into its specificity and druggable potential. These experiments investigated the bioavailability of dihydromyricetin in the brain and serum associated with acute anti-intoxicating effects in C57BL/6J mice. Dihydromyricetin (50 mg/kg IP) administered 0 or 15-min prior to ethanol (PO 5 g/kg) significantly reduced ethanol-induced loss of righting reflex. Total serum exposures (AUC0→24) of dihydromyricetin (PO 50 mg/kg) via oral (PO) administration were determined to be 2.5 µM × h (male) and 0.7 µM × h (female), while intraperitoneal (IP) administration led to 23.8-fold and 7.2- increases in AUC0→24 in male and female mice, respectively. Electrophysiology studies in α5ß3γ2 GABAA receptors expressed in Xenopus oocytes suggest dihydromyricetin (10 µM) potentiates GABAergic activity (+43.2%), and the metabolite 4-O-methyl-dihydromyricetin (10 µM) negatively modulates GABAergic activity (-12.6%). Our results indicate that administration route and sex significantly impact DHM bioavailability in mice, which is limited by poor absorption and rapid clearance. This correlates with the observed short duration of DHM's anti-intoxicating properties and highlights the need for further investigation into mechanism of DHM's potential anti-intoxicating properties.


Asunto(s)
Intoxicación Alcohólica/prevención & control , Encéfalo/metabolismo , Etanol/toxicidad , Flavonoles/farmacología , Intoxicación Alcohólica/etiología , Intoxicación Alcohólica/metabolismo , Intoxicación Alcohólica/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Depresores del Sistema Nervioso Central/toxicidad , Femenino , Flavonoles/sangre , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Crit Rev Food Sci Nutr ; 60(4): 597-625, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30614258

RESUMEN

The aging of populations worldwide is driving greater demands for dietary polyphenols which have been recognized as promising prophylactic and/or therapeutic agents in the context of neurodegeneration, and are ubiquitously present in plant-based diets. In particular, grape-derived products encompass a wide array of phenolic compounds purported with multiple health benefits including neuroprotective efficacy. Despite the increasing preclinical and clinical evidence demonstrating high potential of grape polyphenol (GPP)-rich botanicals in preventing and attenuating diverse neurodegenerative disorders, the limited bioavailability of GPPs, especially in the brain, generates questions as to their applications and effectiveness in neuroprotection. To address this issue, significant research efforts have been made to enhance oral bioavailability of GPPs via application of novel strategies. This review highlights some critical issues related to the bioavailability and neuroprotective efficacy of GPPs and GPP-rich botanicals. The representative bioavailability-enhancing strategies are critically reviewed to provide practical solutions for augmenting the bioefficacy of GPP-rich botanicals. Synergistic applications of encapsulation techniques (for physiochemical protection and bypassing xenobiotic metabolism) and dietary intervention strategies involving modulation of gut microbiota (for generating more bioavailable phenolic metabolites) appear promising, and may substantially enhance the bioefficacy, especially the neuroprotective efficacy, of orally consumed GPPs.


Asunto(s)
Neuroprotección/efectos de los fármacos , Polifenoles/química , Polifenoles/farmacología , Vitis/química , Microbioma Gastrointestinal/efectos de los fármacos , Humanos
7.
Rapid Commun Mass Spectrom ; 34(19): e8882, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32644256

RESUMEN

RATIONALE: The safe consumption of Solanum scabrum and S. nigrum berries (SNBs) depends on a reliable and rapid chemical screen for the testing of the fruit and/or final food and industrial products for the presence and level of toxic glycoalkaloids. Such a rapid and sensitive screen could also be used by those involved in food safety and forensics, industry, research labs and those in agriculture production, breeding and food processing. Significant variation in the content and composition of glycoalkaloids across SNBs has been reported. To facilitate high-throughput targeted analysis, this work overcame the slow scan speed of a traditional triple quadruple mass spectrometry (QqQ) method by development of a pseudo-MS3 method. METHODS: In-source fragmentation functioned as a pseudo-MS or pseudo-hydrolysis to trim down the structurally diverse and complex glycosides into five types of aglycone ions, which were then analyzed using multiple reaction monitoring (MRM). Characteristic product ions were selected based on the aglycone skeleton and substitution pattern and associated fragmentation pathway. RESULTS: A compact method with only 15 MRM transitions were developed for high-throughput screening of very diverse glycoalkaloids. Glycosides of the same aglycone type were readily identified in the same transition window without the need for mass spectra interpretation. Validated using solamargine, the sole available standard, the accuracy was 99.7-101.3%, the intra- and inter-day precision were, respectively, 2.5-5.0% and 8.0-9.2%, and the lower limit of detection and quantification were, respectively, 3.1 and 10.2 ng/mL (with 1 µL injection volume). CONCLUSIONS: The peudo-MS3 method allowed for high-throughput targeted analysis with compact MRM transitions to address a large number of glycoalkaloids with diverse structures. This method could serve to meet the most heavy-duty demand for rapid inspection of glycoalkaloids in SNBs. This method can be adopted and used by those involved in food safety and forensics, in developing food and industrial products and in genetics and breeding.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Alcaloides Solanáceos/análisis , Solanum/química , Espectrometría de Masas en Tándem/métodos , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007965

RESUMEN

The first total synthesis of novel skeleton natural compounds kinkeloids A and B, a group of newly discovered flavan alkaloids isolated from the African plant Combretum micranthum, are described in this study. The key and final step are achieved by Mannich reaction, through which the piperidine moiety couples to the flavan moiety. The identities of synthesized kinkeloids were further confirmed through a comparison with the ones in the plant leaves extract using LC/MS.


Asunto(s)
Alcaloides/síntesis química , Flavonoides/síntesis química , Alcaloides/química , Combretum , Flavonoides/química
9.
J Sci Food Agric ; 99(7): 3578-3587, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30628085

RESUMEN

BACKGROUND: Solanum scabrum berries in sub-Saharan Africa are prolific but neglected as an agricultural resource. Recognition and application of such underutilized resources rely on systematic study of the relevant phytochemicals of commercial value. RESULTS: The quantities of a total of 54 phytochemicals in Solanum scabrum berries were assessed using HPLC-MS methods. Berries from eight different genetic sources were analyzed with two entries monitored across different maturation stages. There was a significant variation among mature berries in the accumulation of phenolic acids, 91.5-794 mg·100 g-1 dry weight (DW); flavonols, 76.3-897 mg·100 g-1 DW; anthocyanins, 178-4650 mg·100 g-1 DW; glycoalkaloids, 1.76-1630 mg·100 g-1 DW; and saponins, 82.2-606 mg·100 g-1 DW. Fruit development from immature to post-frost harvest featured dynamic changes in phytochemical composition and, despite remarkable differences in the absolute magnitude of content, the trend of change was generally similar in different genetic sources. CONCLUSIONS: The genotype-dependent difference in toxic glycoalkaloids in mature berries may partially explain the consumption controversy as it reflects glycoalkaloid content. The analytical methods applied in this work should serve for quality control of glycoalkaloids thereby improving the safe utilization of this berry. In addition, the selection and breeding of new genotypes with low and safe levels of glycoalkaloids and saponins in the berry could be of value in sub-Saharan Africa to increase nutrition and generate new income opportunities for growers. © 2019 Society of Chemical Industry.


Asunto(s)
Alcaloides/química , Extractos Vegetales/química , Polifenoles/química , Saponinas/química , Solanum/química , Cromatografía Líquida de Alta Presión , Frutas/química , Espectrometría de Masas , Control de Calidad
10.
BMC Plant Biol ; 18(1): 69, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29685108

RESUMEN

BACKGROUND: The basil (Ocimum spp.) genus maintains a rich diversity of phenotypes and aromatic volatiles through natural and artificial outcrossing. Characterization of population structure and genetic diversity among a representative sample of this genus is severely lacking. Absence of such information has slowed breeding efforts and the development of sweet basil (Ocimum basilicum L.) with resistance to the worldwide downy mildew epidemic, caused by the obligate oomycete Peronospora belbahrii. In an effort to improve classification of relationships 20 EST-SSR markers with species-level transferability were developed and used to resolve relationships among a diverse panel of 180 Ocimum spp. accessions with varying response to downy mildew. RESULTS: Results obtained from nested Bayesian model-based clustering, analysis of molecular variance and unweighted pair group method using arithmetic average (UPGMA) analyses were synergized to provide an updated phylogeny of the Ocimum genus. Three (major) and seven (sub) population (cluster) models were identified and well-supported (P < 0.001) by PhiPT (ΦPT) values of 0.433 and 0.344, respectively. Allelic frequency among clusters supported previously developed hypotheses of allopolyploid genome structure. Evidence of cryptic population structure was demonstrated for the k1 O. basilicum cluster suggesting prevalence of gene flow. UPGMA analysis provided best resolution for the 36-accession, DM resistant k3 cluster with consistently strong bootstrap support. Although the k3 cluster is a rich source of DM resistance introgression of resistance into the commercially important k1 accessions is impeded by reproductive barriers as demonstrated by multiple sterile F1 hybrids. The k2 cluster located between k1 and k3, represents a source of transferrable tolerance evidenced by fertile backcross progeny. The 90-accession k1 cluster was largely susceptible to downy mildew with accession 'MRI' representing the only source of DM resistance. CONCLUSIONS: High levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure and genetic relationships among Ocimum spp. germplasm provide the foundation for improved DM resistance breeding strategies and more rapid response to future disease outbreaks.


Asunto(s)
Resistencia a la Enfermedad/genética , Ocimum/genética , Peronospora , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/inmunología , Genes de Plantas/genética , Variación Genética/genética , Variación Genética/inmunología , Ocimum/inmunología , Ocimum basilicum/genética , Ocimum basilicum/inmunología , Filogenia , Filogeografía , Enfermedades de las Plantas/microbiología , Ploidias
11.
Mol Pharm ; 15(3): 840-850, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-28665131

RESUMEN

The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity, and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation, and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking data sets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these data sets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites and their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative analysis of heterogeneous data types in the development of complex botanicals such as polyphenols for eventual clinical and translational applications.


Asunto(s)
Análisis de Datos , Conjuntos de Datos como Asunto , Desarrollo de Medicamentos/métodos , Fitoquímicos/farmacología , Polifenoles/farmacología , Bases de Datos Factuales , Polifenoles/química
12.
Bioorg Med Chem ; 25(20): 5355-5364, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28797772

RESUMEN

A series of novel flavonoid alkaloids were synthesized with different flavonoids and attached nitrogen-containing moieties. These new compounds were screened for inhibitory activity of α-glucosidase, among which compound 23 was found to show the lowest IC50 of 4.13µM. Kinetic analysis indicates that the synthesized compounds 15 and 23 inhibit the enzyme in a non-competitive model with Ki value of 37.8±0.8µM and 13.2±0.6µM. Further docking studies suggest that the preferred binding pocket is close to the catalytic center, correlating to the experimental results. Structure activity relationship studies (SAR) indicate that 4'-hyroxyl group and the 4-position carbonyl group in the flavonoid structure are important for this biological activity. Addition of extra hydrogen bonding and hydrophobic groups on ring A would increase the inhibitory activity.


Asunto(s)
Alcaloides/farmacología , Flavonoides/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , Alcaloides/síntesis química , Alcaloides/química , Relación Dosis-Respuesta a Droga , Flavonoides/síntesis química , Flavonoides/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
13.
Phytopathology ; 105(7): 885-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25894318

RESUMEN

Basil (Ocimum spp.) is one of the most economically important and widely grown herbs in the world. Basil downy mildew, caused by Peronospora belbahrii, has become an important disease in sweet basil (O. basilicum) production worldwide in the past decade. Global sweet basil production is at significant risk to basil downy mildew because of the lack of genetic resistance and the ability of the pathogen to be distributed on infested seed. Controlling the disease is challenging and consequently many crops have been lost. In the past few years, plant breeding efforts have been made to identify germplasm that can be used to introduce downy mildew resistance genes into commercial sweet basils while ensuring that resistant plants have the correct phenotype, aroma, and tastes needed for market acceptability. Fungicide efficacy studies have been conducted to evaluate current and newly developed conventional and organic fungicides for its management with limited success. This review explores the current efforts and progress being made in understanding basil downy mildew and its control.


Asunto(s)
Ocimum basilicum/microbiología , Peronospora/fisiología , Farmacorresistencia Microbiana , Fungicidas Industriales , Interacciones Huésped-Patógeno , Control de Plagas , Enfermedades de las Plantas/economía
14.
FASEB J ; 27(2): 769-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23097297

RESUMEN

Epidemiological and preclinical studies indicate that polyphenol intake from moderate consumption of red wines may lower the relative risk for developing Alzheimer's disease (AD) dementia. There is limited information regarding the specific biological activities and cellular and molecular mechanisms by which wine polyphenolic components might modulate AD. We assessed accumulations of polyphenols in the rat brain following oral dosage with a Cabernet Sauvignon red wine and tested brain-targeted polyphenols for potential beneficial AD disease-modifying activities. We identified accumulations of select polyphenolic metabolites in the brain. We demonstrated that, in comparison to vehicle-control treatment, one of the brain-targeted polyphenol metabolites, quercetin-3-O-glucuronide, significantly reduced the generation of ß-amyloid (Aß) peptides by primary neuron cultures generated from the Tg2576 AD mouse model. Another brain-targeted metabolite, malvidin-3-O-glucoside, had no detectable effect on Aß generation. Moreover, in an in vitro analysis using the photo-induced cross-linking of unmodified proteins (PICUP) technique, we found that quercetin-3-O-glucuronide is also capable of interfering with the initial protein-protein interaction of Aß(1-40) and Aß(1-42) that is necessary for the formation of neurotoxic oligomeric Aß species. Lastly, we found that quercetin-3-O-glucuronide treatment, compared to vehicle-control treatment, significantly improved AD-type deficits in hippocampal formation basal synaptic transmission and long-term potentiation, possibly through mechanisms involving the activation of the c-Jun N-terminal kinases and the mitogen-activated protein kinase signaling pathways. Brain-targeted quercetin-3-O-glucuronide may simultaneously modulate multiple independent AD disease-modifying mechanisms and, as such, may contribute to the benefits of dietary supplementation with red wines as an effective intervention for AD.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Quercetina/análogos & derivados , Administración Oral , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antocianinas/administración & dosificación , Antocianinas/farmacocinética , Disponibilidad Biológica , Células Cultivadas , Suplementos Dietéticos , Modelos Animales de Enfermedad , Glucósidos , Humanos , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacocinética , Polifenoles/administración & dosificación , Polifenoles/metabolismo , Polifenoles/farmacocinética , Multimerización de Proteína/efectos de los fármacos , Quercetina/administración & dosificación , Quercetina/farmacocinética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Vino/análisis
15.
Plant Dis ; 98(11): 1561-1566, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30699781

RESUMEN

Basil downy mildew (BDM), caused by the fungus-like oomycete pathogen Peronospora belbahrii, has become a destructive disease of sweet basil (Ocimum basilicum). Without proper management, BDM can cause complete crop loss. Currently, there are no commercially available sweet basil cultivars with genetic resistance to BDM. Because BDM is a relatively new disease of basil in the United States, there are few currently registered conventional or organic fungicides labeled for its control. Fungicide efficacy trials were conducted in 2010 and 2011 at Rutgers Agricultural Research and Extension Center in Bridgeton, NJ. During both years, seven biological fungicide treatments were field evaluated, including hydrogen dioxide; extract of Reynoutria sachalinensis; Bacillus pumilus strain QST 2808; a mixture of rosemary oil, clove oil, and thyme oil; mono- and dipotassium salts of phosphorous acid; sesame oil; copper hydroxide; and a combination of sesame oil + cupric hydroxide. Six conventional fungicides evaluated included mandipropamid, fluopicolide, propamocarb hydrochloride, cyazofamid, azoxystrobin, and fenamidone. In both years, mono- and dipotassium salts of phosphorous acid provided the best control. Moderate disease suppression was provided by mandipropamid, cyazofamid, and fluopicolide compared with the control in 2010 and mandipropamid, cyazofamid, and copper hydroxide compared with the control in 2011.

16.
J Food Sci ; 89(2): 1098-1113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38235990

RESUMEN

Hibiscus sabdariffa has gained increasing attention from consumers as a natural, healthy food ingredient, leading to a myriad of available products, yet there is a lack of understanding of the quality and chemical diversity among commercially available hibiscus products. Here, we conducted a survey on the chemistry of 29 hibiscus products (calyces, beverages, and extracts). UHPLC-DAD and UHPLC-QQQ/MS methods with high sensitivity and selectivity were developed to evaluate the chemical profiles pertaining to the sensory attributes (color and taste). Two major anthocyanins (delphinidin-3-sambubioside and cyanindin-3-sambubioside), eight organic acids, and 23 phenolic acids were identified and quantified in hibiscus market products. The results showed that hibiscus samples contained < 0.001-2.372% of total anthocyanins, 0.073-78.002% of total organic acids, and 0.001-1.041% of total phenolic acids, and demonstrated significant variations in market products. This is the first time that an in-depth organic acid profiling was conducted on hibiscus products using UHPLC-QQQ/MS. This method can also be extended to chemical profiling, sensory analysis, quality control, authentication, and standardization of other natural products.


Asunto(s)
Antocianinas , Hibiscus , Hidroxibenzoatos , Antocianinas/análisis , Flores/química , Compuestos Orgánicos , Fenoles/análisis , Extractos Vegetales
17.
PLoS One ; 19(4): e0299825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593174

RESUMEN

Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.


Asunto(s)
Ocimum basilicum , Sitios de Carácter Cuantitativo , Humanos , Ocimum basilicum/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Genómica , Polimorfismo de Nucleótido Simple , Ligamiento Genético
18.
Artículo en Inglés | MEDLINE | ID: mdl-38880055

RESUMEN

Grape and grape derived products contain many bioactive phenolics which have a variety of impacts on health. Following oral ingestion, the phenolic compounds and their metabolites may be detectable in human urine. However, developing a reliable method for the analysis of phenolic compounds in urine is challenging. In this work, we developed and validated a new high-throughput, sensitive and reproducible analytical method for the simultaneous analysis of 31 grape phenolic compounds and metabolites using Oasis PRiME HLB cleanup for sample preparation combined with ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Using this new method, the accuracy achieved was 69.3 % ∼ 134.9 % (except for six compounds), and the recovery achieved was 52.4 % ∼ 134.7 % (except for two very polar compounds). For each of the 31 target analytes, the value of intra-day precision was less than 14.3 %. The value of inter-day precision was slightly higher than intra-day precision, with a range of 0.7 % ∼ 19.1 %. We report for the first time on the effect of gender and BMI on the accuracy and recovery of human urine samples, and results from analysis of variance (ANOVA), and principal component analysis (PCA) indicated there was no difference in the value of accuracy and recovery between different gender or BMI (>30) using our purposed cleanup and UHPLC-QqQ-MS/MS method. Overall, this newly developed method could serve as a powerful tool for analyzing grape phenolic compounds and metabolites in human urine samples.


Asunto(s)
Polifenoles , Espectrometría de Masas en Tándem , Vitis , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Vitis/química , Polifenoles/orina , Reproducibilidad de los Resultados , Masculino , Femenino , Modelos Lineales , Límite de Detección , Adulto , Ensayos Analíticos de Alto Rendimiento/métodos
19.
J Neurosci ; 32(15): 5144-50, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496560

RESUMEN

While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as by limited knowledge regarding their bioavailability, metabolism, and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer's disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. In this study, we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ∼400 nM. Most importantly, we report for the first time that a biosynthetic epicatechin metabolite, 3'-O-methyl-epicatechin-5-O-ß-glucuronide (3'-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3'-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in AD and other forms of dementia.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Proantocianidinas/uso terapéutico , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Antioxidantes/metabolismo , Disponibilidad Biológica , Biotransformación , Western Blotting , Cromatografía Líquida de Alta Presión , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Dieta , Sistemas de Liberación de Medicamentos , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Polifenoles/química , Polifenoles/farmacología , Proantocianidinas/farmacocinética , Proantocianidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Vitis/química
20.
Front Plant Sci ; 14: 1237577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745993

RESUMEN

Basil (Ocimum basilicum L.) is a popular specialty crop known for its use as a culinary herb and medicinal plant around the world. However, its profitability and availability are limited by a short postharvest shelf life due to poor handling, cold sensitivity and microbial contamination. Here, we comprehensively review the research on pre- and postharvest techniques that extend the shelf life of basil to serve as a practical tool for growers, distributors, retailers and scientists. Modifications to postharvest storage conditions, pre- and postharvest treatments, harvest time and preharvest production methods have been found to directly impact the quality of basil and its shelf life. The most effective strategies for extending the shelf life and improving the quality of basil are discussed and promising strategies that research and industry employ are identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA