Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23331, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031991

RESUMEN

Adequate and timely delivery of iron is essential for brain development. The uptake of transferrin-bound (Tf) iron into the brain peaks at the time of myelination, whereas the recently discovered H-ferritin (FTH1) transport of iron into the brain continues to increase beyond the peak in myelination. Here, we interrogate the impact of dietary iron deficiency (ID) on the uptake of FTH1- and Tf-bound iron. In the present study, we used C57BL/6J male and female mice at a developing (post-natal day (PND) 15) and adult age (PND 85). In developing mice, ID results in increased iron delivery from both FTH1 and Tf for both males and females. The amount of iron uptake from FTH1 was higher than the Tf and this difference between the iron delivery was much greater in females. In contrast, in the adult model, ID was associated with increased brain iron uptake by both FTH1 and Tf but only in the males. There was no increased uptake from either protein in the females. Moreover, transferrin receptor expression on the microvasculature as well as whole brain iron, and H and L ferritin levels revealed the male brains became iron deficient but not the female brains. Last, under normal dietary conditions, 55 Fe uptake was higher in the developing group from both delivery proteins than in the adult group. These results indicate that there are differences in iron acquisition between the developing and adult brain for FTH1 and Tf during nutritional ID and demonstrate a level of regulation of brain iron uptake that is age and sex-dependent.


Asunto(s)
Deficiencias de Hierro , Hierro , Ratones , Masculino , Animales , Femenino , Hierro/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Transferrina , Hierro de la Dieta/metabolismo
2.
J Biol Chem ; 299(2): 102868, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603765

RESUMEN

Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.


Asunto(s)
Barrera Hematoencefálica , Exosomas , Hierro , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Transporte Biológico
3.
J Neurochem ; 165(5): 625-642, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37000124

RESUMEN

Brain iron homeostasis is crucial for neurological health, with pathological fluctuations in brain iron levels associated with a variety of neurological disorders. Low levels are connected to cognitive impairment and restless legs syndrome, while high levels are connected to Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Given the detrimental effects unrestricted iron can have, regulated entry into the brain via transferrin and H-ferritin is critical. Endothelial cells of the blood-brain barrier are the site of iron transport regulation. The movement of iron through endothelial cells into the brain can be divided into three distinct processes: uptake, transcytosis, and release. Each process possesses external and internal influences on the regulation at each stage. This review discusses the mechanisms of iron uptake, transcytosis, and release at the blood-brain barrier, as well as the elements that contribute to regulation. Additionally, we explore the dysregulation of brain iron in Alzheimer's disease, Parkinson's disease, and restless legs syndrome.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Síndrome de las Piernas Inquietas , Humanos , Células Endoteliales , Encéfalo , Barrera Hematoencefálica , Hierro , Homeostasis/fisiología
4.
J Neurochem ; 167(2): 248-261, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667496

RESUMEN

Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.

5.
J Biomed Sci ; 30(1): 36, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277838

RESUMEN

BACKGROUND: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron-deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanisms of apo- and holo-Tf influence on iron release was largely unknown. METHODS: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism by which apo- and holo-Tf influence cellular iron release. Given the established role of hepcidin in regulating cellular iron release, we further explored the relationship of hepcidin to transferrin in this model. RESULTS: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly interacts with ferroportin, whereas apo-Tf directly interacts with hephaestin. Only pathophysiological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, but similar hepcidin levels are unable to interfere with the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to more rapidly internalize ferroportin compared to holo-Tf. CONCLUSIONS: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin cooperate to suppress iron release. These results expand on our previous reports on mechanisms mediating regulation of brain iron uptake to provide a more thorough understanding of the regulatory mechanisms mediating cellular iron release in general.


Asunto(s)
Hepcidinas , Transferrina , Humanos , Transferrina/metabolismo , Hepcidinas/metabolismo , Células Endoteliales/metabolismo , Células HEK293
6.
J Neurochem ; 152(3): 381-396, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31339576

RESUMEN

Iron delivery to the developing brain is essential for energy and metabolic support needed for processes such as myelination and neuronal development. Iron deficiency, especially in the developing brain, can result in a number of long-term neurological deficits that persist into adulthood. There is considerable debate that excess access to iron during development may result in iron overload in the brain and subsequently predispose individuals to age-related neurodegenerative diseases. There is a significant gap in knowledge regarding how the brain acquires iron during development and how biological variables such as development, genetics, and sex impact brain iron status. In this study, we used a mouse model expressing a mutant form of the iron homeostatic regulator protein HFE, (Hfe H63D), the most common gene variant in Caucasians, to determine impact of the mutation on brain iron uptake. Iron uptake was assessed using 59 Fe bound to either transferrin or H-ferritin as the iron carrier proteins. We demonstrate that at postnatal day 22, mutant mice brains take up greater amounts of iron compared with wildtype. Moreover, we introduce H-ferritin as a key protein in brain iron transport during development and identify a sex and genotype effect demonstrating female mutant mice take up more iron by transferrin, whereas male mutant mice take up more iron from H-ferritin at PND22. Furthermore, we begin to elucidate the mechanism for uptake using immunohistochemistry to profile the regional distribution and temporal expression of transferrin receptor and T-cell immunoglobulin and mucin domain 2, the latter is the receptor for H-ferritin. These data demonstrate that sex and genotype have significant effects on iron uptake and that regional receptor expression may play a large role in the uptake patterns during development. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14731.


Asunto(s)
Apoferritinas/metabolismo , Encéfalo/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Femenino , Genotipo , Proteína de la Hemocromatosis/genética , Masculino , Ratones , Caracteres Sexuales
7.
Proc Natl Acad Sci U S A ; 113(2): 298-303, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26712017

RESUMEN

This paper identifies rare climate challenges in the long-term history of seven areas, three in the subpolar North Atlantic Islands and four in the arid-to-semiarid deserts of the US Southwest. For each case, the vulnerability to food shortage before the climate challenge is quantified based on eight variables encompassing both environmental and social domains. These data are used to evaluate the relationship between the "weight" of vulnerability before a climate challenge and the nature of social change and food security following a challenge. The outcome of this work is directly applicable to debates about disaster management policy.


Asunto(s)
Clima , Abastecimiento de Alimentos , Cambio Climático , Humanos , Cambio Social
8.
J Neuroinflammation ; 15(1): 30, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391061

RESUMEN

BACKGROUND: Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. METHODS: Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. RESULTS: The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. CONCLUSIONS: These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.


Asunto(s)
Genotipo , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Macrófagos/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Sustitución del Gen , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
Biochem Biophys Res Commun ; 494(1-2): 70-75, 2017 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-29054412

RESUMEN

Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Hierro/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/metabolismo , Bovinos , Células Cultivadas , Endosomas/metabolismo , Células Endoteliales/metabolismo , Hepcidinas/metabolismo , Microvasos/metabolismo , Modelos Neurológicos , Transferrina/metabolismo
10.
Res Sq ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711476

RESUMEN

Background : Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods : Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results : We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions : These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.

11.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712094

RESUMEN

Background: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.

12.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292926

RESUMEN

Excessive brain iron accumulation is observed in early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway protein levels. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease to detrimental ends. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation. Significance Statement: Excessive brain iron accumulation is hallmark pathology of Alzheimer's disease that occurs early in the disease staging and before widespread proteinopathy deposition. This overabundance of brain iron has been implicated to contribute to disease progression, thus understandingthe mechanism of early iron accumulation has significant therapeutic potential to slow to halt disease progression. Here, we show that in response to low levels of amyloid-ß exposure, astrocytes increase their mitochondrial activity and iron uptake, resulting in iron deficient conditions. Elevated levels of apo (iron free)-transferrin stimulate iron release from endothelial cells. These data are the first to propose a mechanism for the initiation of iron accumulation and the misappropriation of iron transport signaling leading to dysfunctional brain iron homeostasis and resultant disease pathology.

13.
Pharmacol Rep ; 74(4): 696-708, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792967

RESUMEN

BACKGROUND: Diabetes is an independent risk factor of stroke and previous studies have confirmed that diabetic patients and animals experience poorer clinical outcomes following stroke. In this study, we aim to determine the effect of chronic exposure of the first-line antidiabetic agent, metformin, to restore euglycemia and to impact brain cell death following stroke in a new type-2 diabetes, NONcNZO10/LtJ (RCS-10) mouse model of stroke. METHODS: Male RCS-10 mice received a moderate (11%) fat diet post-weaning, at 4 weeks of age, and became diabetic by 12-14 weeks, thus resembling human maturity-onset diabetes. The mice received either metformin or vehicle for 4 weeks before undergoing a hypoxic/ischemic (HI) insult. Blood samples were collected pre-, post-treatment, and post HI for glucose and lipid measurements, and brains were analyzed for infarct size, glial activation, neuronal cell death, and metformin-mediated adenosine monophosphate-activated protein kinase (AMPK) signaling at 48 h post HI. RESULTS: Pretreatment with metformin maintained euglycemia for 4 weeks but did not change body weight or lipid profile. Metformin treatment significantly enhanced the microglial Bfl-1 mRNA expression and showed a non-significant increase in GFAP mRNA, however, GFAP protein levels were reduced. Metformin treatment slightly increased neuronal NeuN and MAP-2 protein levels and significantly reduced overall mortality post HI but did not elicit any significant change in infarct size. CONCLUSION: The study suggests that the prolonged effect of metformin-induced euglycemia promoted the microglial activation, reduced neuronal cell death, and improved the overall survival following stroke, without any change in infarct size.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Accidente Cerebrovascular , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Infarto , Lípidos , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Ratones , ARN Mensajero , Accidente Cerebrovascular/tratamiento farmacológico
14.
Fluids Barriers CNS ; 19(1): 49, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689283

RESUMEN

BACKGROUND: The brain requires iron for a number of processes, including energy production. Inadequate or excessive amounts of iron can be detrimental and lead to a number of neurological disorders. As such, regulation of brain iron uptake is required for proper functioning. Understanding both the movement of iron into the brain and how this process is regulated is crucial to both address dysfunctions with brain iron uptake in disease and successfully use the transferrin receptor uptake system for drug delivery. METHODS: Using in vivo steady state infusions of apo- and holo-transferrin into the lateral ventricle, we demonstrate the regulatory effects of brain apo- and holo-transferrin ratios on the delivery of radioactive 55Fe bound to transferrin or H-ferritin in male and female mice. In discovering sex differences in the response to apo- and holo-transferrin infusions, ovariectomies were performed on female mice to interrogate the influence of circulating estrogen on regulation of iron uptake. RESULTS: Our model reveals that apo- and holo-transferrin significantly regulate iron uptake into the microvasculature and subsequent release into the brain parenchyma and their ability to regulate iron uptake is significantly influenced by both sex and type of iron delivery protein. Furthermore, we show that cells of the microvasculature act as reservoirs of iron and release the iron in response to cues from the interstitial fluid of the brain. CONCLUSIONS: These findings extend our previous work to demonstrate that the regulation of brain iron uptake is influenced by both the mode in which iron is delivered and sex. These findings further emphasize the role of the microvasculature in regulating brain iron uptake and the importance of cues regarding iron status in the extracellular fluid.


Asunto(s)
Hierro , Transferrina , Animales , Apoferritinas , Transporte Biológico , Encéfalo/metabolismo , Femenino , Hierro/metabolismo , Masculino , Ratones , Transferrina/metabolismo
15.
J Neurochem ; 119(5): 1029-40, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21923664

RESUMEN

Diabetes is a major risk factor of stroke and is associated with increased frequency of stroke and a poorer prognosis for recovery. In earlier studies we have utilized type 2 diabetic mouse models of stroke and demonstrated that diabetic db/db and ob/ob mice experience larger infarct volumes and impaired recovery associated with greater infiltration of macrophage following hypoxic-ischemic (H/I) insult than their heterozygous non-diabetic db/+ and ob/+ littermates. To obtain a better understanding of the pathogenesis of the impaired recovery, we have investigated the role of matrix metalloproteases and their endogenous inhibitors in the breakdown of the blood-brain barrier (BBB) following H/I. Diabetic db/db mice showed a significant and more rapid increase in matrix metalloprotease (MMP)-9 mRNA, protein and gelatinolytic activity compared with db/+, which resulted in an increased degradation of occludin and collagen IV and subsequently, an increased BBB permeability and greater infiltration of neutrophils into the infarct area. The expression of the MMPs, especially in the db/+ mice, is preceded by an elevated expression of their endogenous tissue inhibitors of metalloproteases (TIMPs) 1, 2, and 3, whereas in the db/db mice, a lower expression of the TIMPs is associated with greater MMP 3 and 9 expression. These results suggest that an imbalance in the MMPs/TIMPs cascade in the diabetic mouse, particularly MMP-9, results in a greater neutrophil invasion, a compromised BBB and consequently a greater insult.


Asunto(s)
Barrera Hematoencefálica/enzimología , Complicaciones de la Diabetes/enzimología , Diabetes Mellitus Tipo 2/enzimología , Hipoxia-Isquemia Encefálica/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Recuperación de la Función/genética , Accidente Cerebrovascular/enzimología , Animales , Barrera Hematoencefálica/fisiopatología , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/etiología , Hipoxia-Isquemia Encefálica/genética , Masculino , Metaloproteinasa 9 de la Matriz/fisiología , Ratones , Ratones Mutantes , Ratones Obesos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/genética , Regulación hacia Arriba/genética
16.
Neurobiol Dis ; 43(3): 588-97, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21624469

RESUMEN

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.


Asunto(s)
Envejecimiento/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/genética , Transportadores de Ácidos Monocarboxílicos/genética , ARN Mensajero/biosíntesis , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Simportadores/genética , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Antimaníacos/toxicidad , Glucemia/metabolismo , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Compuestos de Litio/toxicidad , Masculino , Agonistas Muscarínicos/toxicidad , Pilocarpina/toxicidad , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/fisiopatología
17.
Biochem Biophys Res Commun ; 412(4): 644-7, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21856283

RESUMEN

Glucocorticoids are potent regulators of cell metabolism, and in part act through a receptor-based mechanism to alter the transcription of target genes. A plethora of studies have utilized the glucocorticoid receptor antagonist, RU-486, both in vivo and in vitro, to reverse or prevent hormone-induced alterations in gene transcription. However, although RU-486 potently blocks many of the functions of the receptor, it does not lower plasma concentrations of the hormone, and a biomarker for the effectiveness of RU-486 in blocking receptor activation is lacking. In the present study, we demonstrate glucocorticoid-induced changes in expression of a protein referred to as regulated in development and DNA damage response (REDD1) in a variety of mouse models of hypercortisolemia including stroke, type 2 diabetes, and stress induced by confinement. Notably REDD1 expression in skeletal muscle positively correlated with changes in corticosterone concentrations in all conditions. RU-486 had no effect on corticosterone concentrations, but strongly attenuated the stroke-, diabetes-, and stress-induced changes in REDD1 expression. Overall, the results of the present study suggest that changes in REDD1 expression in skeletal muscle represent an excellent surrogate biomarker for the efficacy of RU-486 treatment in repressing glucocorticoid action.


Asunto(s)
Biomarcadores Farmacológicos/metabolismo , Mifepristona/farmacología , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Animales , Daño del ADN , Glucocorticoides/antagonistas & inhibidores , Masculino , Ratones , Factores de Transcripción/genética
18.
J Neurosci Res ; 89(12): 1913-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21910135

RESUMEN

Glucose is the primary metabolic fuel for the mammalian brain, and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. [2001] J Biol Chem 276:12725-12729) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. This study has extended these observations and, by using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy, determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation.


Asunto(s)
Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 1/metabolismo , Animales , Northern Blotting , Western Blotting , Bovinos , Electroforesis en Gel Bidimensional , Microscopía Inmunoelectrónica , Fosforilación , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
19.
J Hum Evol ; 61(3): 254-69, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21777951

RESUMEN

Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates that Late Pleistocene pathways to (aspects of) behavioural 'modernity' (composite tools, practice of symbolism and ritual, broad spectrum economy) were diverse and ecologically contingent.


Asunto(s)
Dieta , Animales , Arqueología , Biota , Cuevas , Mamíferos , Plantas , Sri Lanka , Árboles , Humanos
20.
Neurochem Int ; 139: 104790, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652270

RESUMEN

Diabetic mice exhibit increased mortality and morbidity following stroke. Recent studies from our laboratory have indicated that increased morbidity in diabetic db/db mice relative to their non-diabetic db/+ littermates is associated with increased levels of MMP-9 protease activity, increased blood-brain barrier (BBB) permeability, and greater neutrophil infiltration following hypoxic/ischemic (H/I) insult. Neutrophils are a major source of proteases and reactive oxygen species and studies have reported neutrophil depletion/inhibition is protective in certain models of experimental stroke. The objective of the current study is to determine the role of neutrophils in the increased morbidity seen in db/db mice following acute ischemic stroke. In this study, we found a significant increase in circulating neutrophils in the db/db mice at 4 h post H/I, which bound to endothelial cells in the ipsilateral hemisphere and infiltrated into brain tissue by 24 h of recovery. Depletion of circulating neutrophils resulted in reduced neutrophil concentrations in blood and in the ipsilateral hemispheres of the brain of both db/+ and db/db mice and decreased the levels of MMP-9 within the infarcted area. This resulted in smaller infarct size in the db/db mice compared to non-treated controls but did not affect stroke outcome in db/+ mice. While there was a significant correlation between neutrophil number and the levels of MMP-9 in the ipsilateral hemisphere of control and diabetic mice, surprisingly, neutrophil depletion had no effect on BBB permeability in either group. Thus, the current study suggests that neutrophil depletion reduces MMP-9 protease levels and improves stroke outcome in db/db mice but not in their db/+ counterparts.


Asunto(s)
Isquemia Encefálica/sangre , Encéfalo/metabolismo , Diabetes Mellitus/sangre , Neutrófilos/metabolismo , Accidente Cerebrovascular/sangre , Animales , Isquemia Encefálica/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA