Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res ; 63(21): 7330-7, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-14612531

RESUMEN

C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the cytotoxic response. The continued ability of TOFA to rescue cancer cells from C75 cytotoxicity implies a proapoptotic role for malonyl-CoA independent of CPT-1 that selectively targets cancer cells as they progress into S phase.


Asunto(s)
4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Apoptosis/efectos de los fármacos , Ácido Graso Sintasas/antagonistas & inhibidores , Furanos/farmacología , Apoptosis/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Carnitina O-Palmitoiltransferasa/metabolismo , División Celular/efectos de los fármacos , Línea Celular Tumoral , Interacciones Farmacológicas , Compuestos Epoxi/farmacología , Humanos , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/metabolismo , Fosfolípidos/biosíntesis , Fase S/efectos de los fármacos , Fase S/fisiología
2.
J Neurosci ; 22(13): 5536-51, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097505

RESUMEN

With the discovery of postnatal stem cells within the brain, it has become important to understand how extracellular factors might affect the maturation of neuronal precursors in the postnatal brain. Neurotrophic factors are known to play a role in neuronal development but display pleiotrophic effects, in part because of their physiological interactions with other factors. One factor positioned to interact with neurotrophins in the brains of postnatal animals is atrial C-type natriuretic peptide (CNP). In this study, we used olfactory receptor neurons (ORNs) as a model, because their precursors demonstrate the most robust and functional postnatal neurogenesis of those systems thus far described. We examined the effects of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) and the interactions of these neurotrophins and CNP in postnatal olfactory neuronal precursors. Results obtained using mice with targeted deletion of the gene for BDNF indicated that BDNF is a neuroproliferation-inducing and survival factor for ORN precursors. These roles were confirmed in vitro using primary cultures of ORNs. NGF was found to be a proliferation-inducing factor but not a survival factor. The addition of CNP to either BDNF- or NGF-treated neuronal precursors resulted in an inhibition of proliferation and the promotion of maturation. These effects were accompanied by changes in cell-cycle proteins that suggest possible mechanisms for these effects. Thus, CNP may function in the postnatal brain to regulate the exit from the cell cycle in neuronal precursor cells.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Péptido Natriurético Tipo-C/farmacología , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Neuronas Receptoras Olfatorias/citología , Animales , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , GMP Cíclico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Péptido Natriurético Tipo-C/metabolismo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Biosíntesis de Proteínas , Receptores de Superficie Celular/metabolismo , Células Madre/efectos de los fármacos , Células Madre/fisiología
3.
Cell Cycle ; 6(9): 1077-89, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17404514

RESUMEN

Neuronal stem cell expansion and differentiation is a process involving stages of proliferation and maturation governed by the sequential and combinatorial exposure of cells to extrinsic factors. The olfactory epithelium is an excellent model to investigate regulation of this process, as it undergoes neuronal replacement post-natally. We have shown that the neurotrophins NGF and BDNF sequentially promote proliferation of developing olfactory sensory neuronal precursors, although their kinetics of proliferation and cell fate outcomes differ. Interestingly, CNP inhibits this neurotrophin-induced proliferation and promotes the maturation of these precursors to their next developmental stage. Here, we investigate the mechanisms behind these actions. Both NGF and BDNF increase the expression of cyclin D1 and cyclin-dependent kinase 4 (cdk4), with temporal expression patterns that parallel the proliferation kinetics of their cellular targets. The timing of cyclin D1 expression reflects differences in the need for transcription and translation in early and late stage precursors. CNP inhibits neurotrophin-induced cyclin D1 expression, and induces the expression of different profiles of inhibitory cell cycle proteins, which are neurotrophin-specific and correlate with the attainment of different maturational cell fates. Inhibition of protein degradation reverses the effects of neurotrophins and CNP on cyclin D1 and inhibitor expression levels, respectively. These results suggest a model for cell cycle regulation that involves the simultaneous expression of progressive and inhibitory cell cycle regulatory proteins in response to both proliferation and differentiation agents, followed by selective degradation of these proteins, providing a mechanism for rapid and exquisite control of the cell cycle.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas de Ciclo Celular/metabolismo , Péptido Natriurético Tipo-C/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas Receptoras Olfatorias/metabolismo , Células Madre/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Cicloheximida/farmacología , Sistema de Señalización de MAP Quinasas , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Factor de Crecimiento Nervioso/genética , Neuronas Receptoras Olfatorias/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Ratas , Células Madre/citología
4.
J Insect Physiol ; 48(1): 1-13, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12770127

RESUMEN

Eclosion hormone (EH) is a 62 amino acid neuropeptide that plays an integral role in triggering ecdysis behavior at the end of each molt. At least three populations of cells are thought to be targets for EH, each of which show an EH-stimulated increase in the intracellular messenger guanosine 3', 5' cyclic monophosphate (cGMP). These EH target cells are believed to include two pairs of neurons in each of the ganglia of the ventral nerve cord (VNC) that contain the neuropeptide crustacean cardioactive peptide (CCAP), the Inka cells of the peripheral epitracheal glands and intrinsic non-neuronal cells in the abdominal transverse nerves. This review describes likely signaling cascades that result in the EH-stimulated cGMP increase. Several lines of evidence suggest the involvement of a novel nitric oxide insensitive soluble guanylyl cyclase (GC). A novel GC with these properties has recently been identified and we also present evidence to suggest that it is activated by EH and describe possible pathways for its activation. In addition, we review our current knowledge on the cellular and molecular events that take place downstream of the increase in cGMP.

5.
Mol Cell Neurosci ; 27(1): 44-58, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15345242

RESUMEN

Rett syndrome (RTT) is a severe neurodevelopmental disorder with features of autism that results from mutation of the gene encoding the transcriptional repressor methyl-CpG binding protein (MECP2). The consequences of loss of a transcription factor may be complex, affecting the expression of many proteins, thus limiting understanding of this class of diseases and impeding therapeutic strategies. This is true for RTT. Neither the cell biological mechanism(s) nor the developmental stage affected by MECP2 deficiency is known. In vivo analysis of the olfactory system demonstrates that Mecp2 deficiency leads to a transient delay in the terminal differentiation of olfactory neurons. This delay in maturation disrupts axonal targeting in the olfactory bulb, resulting in abnormal axonal projections, subglomerular disorganization, and a persistent reduction in glomerular size. These results indicate a critical cell biological function for Mecp2 in mediating the final stages of neuronal development.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Neuronas/metabolismo , Bulbo Olfatorio/anomalías , Vías Olfatorias/anomalías , Neuronas Receptoras Olfatorias/anomalías , Proteínas Represoras/genética , Animales , Biomarcadores , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Proteína 2 de Unión a Metil-CpG , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Neurópilo/citología , Neurópilo/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Proteína Marcadora Olfativa , Vías Olfatorias/citología , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
6.
Mol Cell Neurosci ; 24(4): 858-74, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14697654

RESUMEN

Neurons within the olfactory system undergo functional turnover throughout life. This process of cell death and compensatory neurogenesis requires feedback between neuronal populations of different developmental ages. We examined the role of NT-3 in this process. NT-3 was localized within both the olfactory bulb and olfactory epithelium. Mice null for NT-3 showed increased numbers of immature neurons, without change in the number of mature neurons. This was due to compensatory alterations in apoptosis of mature and immature neuronal populations. Using a primary olfactory neuronal culture, NT-3 was found to directly activate the PI3K/Akt pathway and indirectly activate the MAPK and PLC pathways. Activated PI3K/Akt promoted mature neuronal survival and induced the release of secondary factors, which activated the MAPK and PLC pathways to reduce neuronal precursor proliferation and inhibit neuronal maturation. These effects of NT-3 serve to maintain homeostasis between neuronal populations within the olfactory epithelium.


Asunto(s)
Homeostasis/fisiología , Neuronas/metabolismo , Neurotrofina 3/deficiencia , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/metabolismo , Proteínas Serina-Treonina Quinasas , Animales , Células Cultivadas , Activación Enzimática/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neurotrofina 3/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA