Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 597(17): 4481-4501, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31241168

RESUMEN

KEY POINTS: Acute hyperglycaemia at the time of a heart attack worsens the outcome for the patient. Acute hyperglycaemia is not limited to diabetic patients and can be due to a stress response in non-diabetics. This study suggests that the damaging cardiac effects of hyperglycaemia can be reversed by selective PKC inhibition. If PKCα/ß isoforms are inhibited, then high glucose itself becomes protective against ischaemic damage. Selective PKC inhibition may therefore be a useful therapeutic tool to limit the damage that can occur during a heart attack by stress-induced hyperglycaemia. ABSTRACT: Hyperglycaemia has a powerful association with adverse prognosis for patients with acute coronary syndromes (ACS). Previous work shows that high glucose prevents ischaemic preconditioning and causes electrical and mechanical disruption via protein kinase C α/ß (PKCα/ß) activation. The present study aimed to: (i) determine whether the adverse clinical association of hyperglycaemia in ACS can be replicated in preclinical cellular models of ACS and (ii) determine the importance of PKCα/ß activation to the deleterious effect of glucose. Freshly isolated rat, guinea pig or rabbit cardiomyocytes were exposed to simulated ischaemia after incubation in the presence of normal (5 mm) or high (20 mm) glucose in the absence or presence of small molecule or tat-peptide-linked PKCαß inhibitors. In each of the four conditions, the following hallmarks of cardioprotection were recorded using electrophysiology or fluorescence imaging: cardiomyocyte contraction and survival, action potential stability and time to failure, intracellular calcium and ATP, mitochondrial depolarization, ischaemia-sensitive leak current, and time to Kir 6.2 opening. High glucose alone resulted in decreased cardiomyocyte contraction and survival; however, it also imparted cardioprotection in the presence of PKCα/ß inhibitors. This cardioprotective phenotype displayed improvements in all of the measured parameters and decreased myocardium damage during whole heart coronary ligation experiments. High glucose is deleterious to cellular and whole-heart models of simulated ischaemia, in keeping with the clinical association of hyperglycaemia with an adverse outcome in ACS. PKCαß inhibition revealed high glucose to show a cardioprotective phenotype in this setting. The results of the present study suggest the potential for the therapeutic application of PKCαß inhibition in ACS associated with hyperglycaemia.


Asunto(s)
Glucólisis/efectos de los fármacos , Sustancias Protectoras/farmacología , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C-alfa/antagonistas & inhibidores , Animales , Glucosa/farmacología , Glucólisis/fisiología , Cobayas , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Masculino , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Conejos , Ratas , Ratas Wistar
2.
J Mol Cell Cardiol ; 79: 42-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450614

RESUMEN

ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical excitability thus sparing intracellular ATP. This could reduce reperfusion injury by improving calcium homeostasis. Using a combination of contractile function analysis, calcium fluorescence imaging and patch clamp electrophysiology in cardiomyocytes isolated from adult male Wistar rats, we demonstrated that the opening of sarcolemmal KATP channels was markedly delayed after cardioprotective treatments: ischemic preconditioning, adenosine and PMA. This was due to the preservation of intracellular ATP for longer during simulated ischemia therefore maintaining sarcolemmal KATP channels in the closed state for longer. As the simulated ischemia progressed, KATP channels opened to cause contractile, calcium transient and action potential failure; however there was no indication of any channel activity early during simulated ischemia to impart an energy sparing hyperpolarization or action potential shortening. We present compelling evidence to demonstrate that an early opening of sarcolemmal KATP channels during simulated ischemia is not part of the protective mechanism imparted by ischemic preconditioning or other PKC-dependent cardioprotective stimuli. On the contrary, channel opening was actually delayed. We conclude that sarcolemmal KATP channel opening is a consequence of ATP depletion, not a primary mechanism of ATP preservation in these cells.


Asunto(s)
Cardiotónicos/metabolismo , Activación del Canal Iónico , Canales KATP/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Sarcolema/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina/farmacología , Animales , Separación Celular , Diazóxido/farmacología , Activación Enzimática/efectos de los fármacos , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Precondicionamiento Isquémico Miocárdico , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Reperfusión Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Pinacidilo/farmacología , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas Wistar , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
3.
Am J Physiol Heart Circ Physiol ; 307(4): H587-97, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951755

RESUMEN

While it is well established that mortality risk after myocardial infarction (MI) increases in proportion to blood glucose concentration at the time of admission, it is unclear whether there is a direct, causal relationship. We investigated potential mechanisms by which increased blood glucose may exert cardiotoxicity. Using a Wistar rat or guinea-pig isolated cardiomyocyte model, we investigated the effects on cardiomyocyte function and electrical stability of alterations in extracellular glucose concentration. Contractile function studies using electric field stimulation (EFS), patch-clamp recording, and Ca2+ imaging were used to determine the effects of increased extracellular glucose concentration on cardiomyocyte function. Increasing glucose from 5 to 20 mM caused prolongation of the action potential and increased both basal Ca2+ and variability of the Ca2+ transient amplitude. Elevated extracellular glucose concentration also attenuated the protection afforded by ischemic preconditioning (IPC), as assessed using a simulated ischemia and reperfusion model. Inhibition of PKCα and ß, using Gö6976 or specific inhibitor peptides, attenuated the detrimental effects of glucose and restored the cardioprotected phenotype to IPC cells. Increased glucose concentration did not attenuate the cardioprotective role of PKCε, but rather activation of PKCα and ß masked its beneficial effect. Elevated extracellular glucose concentration exerts acute cardiotoxicity mediated via PKCα and ß. Inhibition of these PKC isoenzymes abolishes the cardiotoxic effects and restores IPC-mediated cardioprotection. These data support a direct link between hyperglycemia and adverse outcome after MI. Cardiac-specific PKCα and ß inhibition may be of clinical benefit in this setting.


Asunto(s)
Glucosa/toxicidad , Miocitos Cardíacos/metabolismo , Proteína Quinasa C/metabolismo , Potenciales de Acción , Animales , Señalización del Calcio , Células Cultivadas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Precondicionamiento Isquémico Miocárdico , Isoenzimas/metabolismo , Masculino , Contracción Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas , Ratas Wistar
4.
Br J Pharmacol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763521

RESUMEN

BACKGROUND AND PURPOSE: The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH: Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS: Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS: We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.

5.
Front Cardiovasc Med ; 9: 997013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158799

RESUMEN

Hyperglycaemia at the time of myocardial infarction has an adverse effect on prognosis irrespective of a prior diagnosis of diabetes, suggesting glucose is the damaging factor. In ex vivo models of ischaemia, we demonstrated that deleterious effects of acutely elevated glucose are PKCα/ß-dependent, and providing PKCα/ß are inhibited, elevated glucose confers cardioprotection. Short pre-treatments with high glucose were used to investigate time-dependent glucose cardiotoxicity, with PKCα/ß inhibition investigated as a potential mechanism to reverse the toxicity. Freshly isolated non-diabetic rat cardiomyocytes were exposed to elevated glucose to investigate the time-dependence toxic effects. High glucose challenge for >7.5 min was cardiotoxic, proarrhythmic and lead to contractile failure, whilst cardiomyocytes exposed to metabolic inhibition following 5-min high glucose, displayed a time-dependent protection lasting ∼15 min. This protection was further enhanced with PKCα/ß inhibition. Cardioprotection was measured as a delay in contractile failure and KATP channel activation, improved contractile and Ca2+ transient recovery and increased cell survival. Finally, the effects of pre-ischaemic treatment with high glucose in a whole-heart coronary ligation protocol, where protection was evident with PKCα/ß inhibition. Selective PKCα/ß inhibition enhances protection suggesting glycaemic control with PKC inhibition as a potential cardioprotective therapeutics in myocardial infarction and elective cardiac surgery.

6.
Br J Pharmacol ; 173(5): 870-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660275

RESUMEN

BACKGROUND AND PURPOSE: We investigated the hypothesis that elevated glucose increases contractile responses in vascular smooth muscle and that this enhanced constriction occurs due to the glucose-induced PKC-dependent inhibition of voltage-gated potassium channels. EXPERIMENTAL APPROACH: Patch-clamp electrophysiology in rat isolated mesenteric arterial myocytes was performed to investigate the glucose-induced inhibition of voltage-gated potassium (Kv ) current. To determine the effects of glucose in whole vessel, wire myography was performed in rat mesenteric, porcine coronary and human internal mammary arteries. KEY RESULTS: Glucose-induced inhibition of Kv was PKC-dependent and could be pharmacologically dissected using PKC isoenzyme-specific inhibitors to reveal a PKCß-dependent component of Kv inhibition dominating between 0 and 10 mM glucose with an additional PKCα-dependent component becoming evident at concentrations greater than 10 mM. These findings were supported using wire myography in all artery types used, where contractile responses to vessel depolarization and vasoconstrictors were enhanced by increasing bathing glucose concentration, again with evidence for distinct and complementary PKCα/PKCß-mediated components. CONCLUSIONS AND IMPLICATIONS: Our results provide compelling evidence that glucose-induced PKCα/PKCß-mediated inhibition of Kv current in vascular smooth muscle causes an enhanced constrictor response. Inhibition of Kv current causes a significant depolarization of vascular myocytes leading to marked vasoconstriction. The PKC dependence of this enhanced constrictor response may present a potential therapeutic target for improving microvascular perfusion following percutaneous coronary intervention after myocardial infarction in hyperglycaemic patients.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Glucosa/farmacología , Arterias Mamarias/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Proteína Quinasa C beta/fisiología , Proteína Quinasa C-alfa/fisiología , Animales , Vasos Coronarios/fisiología , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inhibidores , Isoenzimas/fisiología , Masculino , Arterias Mamarias/fisiología , Arterias Mesentéricas/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C-alfa/antagonistas & inhibidores , Ratas Wistar , Porcinos , Vasoconstricción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA