Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37288670

RESUMEN

Flagella are important for eukaryote cell motility, including in sperm, and are vital for life cycle progression of many unicellular eukaryotic pathogens. The '9+2' axoneme in most motile flagella comprises nine outer doublet and two central-pair singlet microtubules. T-shaped radial spokes protrude from the outer doublets towards the central pair and are necessary for effective beating. We asked whether there were radial spoke adaptations associated with parasite lineage-specific properties in apicomplexans and trypanosomatids. Following an orthologue search for experimentally uncharacterised radial spoke proteins (RSPs), we identified and analysed RSP9. Trypanosoma brucei and Leishmania mexicana have an extensive RSP complement, including two divergent RSP9 orthologues, necessary for flagellar beating and swimming. Detailed structural analysis showed that neither orthologue is needed for axoneme assembly in Leishmania. In contrast, Plasmodium has a reduced set of RSPs including a single RSP9 orthologue, deletion of which in Plasmodium berghei leads to failure of axoneme formation, failed male gamete release, greatly reduced fertilisation and inefficient life cycle progression in the mosquito. This indicates contrasting selection pressures on axoneme complexity, likely linked to the different mode of assembly of trypanosomatid versus Plasmodium flagella.


Asunto(s)
Parásitos , Plasmodium , Masculino , Animales , Axonema/metabolismo , Parásitos/metabolismo , Microtúbulos/metabolismo , Semillas , Proteínas/metabolismo , Flagelos/metabolismo , Eucariontes/metabolismo , Plasmodium/metabolismo , Dineínas/metabolismo
2.
Cell Microbiol ; 22(3): e13121, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31634979

RESUMEN

Sexual development is an essential phase in the Plasmodium life cycle, where male gametogenesis is an unusual and extraordinarily rapid process. It produces 8 haploid motile microgametes, from a microgametocyte within 15 minutes. Its unique achievement lies in linking the assembly of 8 axonemes in the cytoplasm to the three rounds of intranuclear genome replication, forming motile microgametes, which are expelled in a process called exflagellation. Surprisingly little is known about the actors involved in these processes. We are interested in kinesins, molecular motors that could play potential roles in male gametogenesis. We have undertaken a functional characterization in Plasmodium berghei of kinesin-8B (PbKIN8B) expressed specifically in male gametocytes and gametes. By generating Pbkin8B-gfp parasites, we show that PbKIN8B is specifically expressed during male gametogenesis and is associated with the axoneme. We created a ΔPbkin8B knockout cell line and analysed the consequences of the absence of PbKIN8B on male gametogenesis. We show that the ability to produce sexually differentiated gametocytes is not affected in ΔPbkin8B parasites and that the 3 rounds of genome replication occur normally. Nevertheless, the development to free motile microgametes is halted and the life cycle is interrupted in vivo. Ultrastructural analysis revealed that intranuclear mitoses are unaffected whereas cytoplasmic microtubules, although assembled in doublets and elongated, fail to assemble in the normal axonemal '9+2' structure and become motile. Absence of a functional axoneme prevented microgamete assembly and release from the microgametocyte, severely reducing infection of the mosquito vector. This is the first functional study of a kinesin involved in male gametogenesis. These results reveal a previously unknown role for PbKIN8B in male gametogenesis, providing new insights into Plasmodium flagellar formation.


Asunto(s)
Axonema/fisiología , Cinesinas/genética , Cinesinas/fisiología , Plasmodium berghei/fisiología , Proteínas Protozoarias/fisiología , Animales , Culicidae/parasitología , Femenino , Técnicas de Inactivación de Genes , Genes Protozoarios , Estadios del Ciclo de Vida , Malaria/parasitología , Ratones , Mitosis , Modelos Animales , Mosquitos Vectores/parasitología , Organismos Modificados Genéticamente , Proteínas Protozoarias/genética
3.
PLoS Pathog ; 13(1): e1006108, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28081253

RESUMEN

Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , Plasmodium/inmunología , Animales , Anticuerpos Antiprotozoarios , Modelos Animales de Enfermedad , Humanos , Malaria/parasitología , Malaria/transmisión , Ratones , Plasmodium/crecimiento & desarrollo , Dinámica Poblacional , Proteínas Protozoarias/inmunología , Glándulas Salivales/parasitología , Esporozoítos/inmunología , Vacunación
4.
Nanomedicine ; 13(2): 515-525, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27720930

RESUMEN

The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems.


Asunto(s)
Antimaláricos/administración & dosificación , Sistemas de Liberación de Medicamentos , Animales , Sulfatos de Condroitina/uso terapéutico , Humanos , Liposomas , Malaria/tratamiento farmacológico , Ratones , Nanopartículas/administración & dosificación
5.
J Infect Dis ; 214(5): 772-81, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27307573

RESUMEN

BACKGROUND: The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. METHOD: Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. RESULTS: No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. CONCLUSIONS: The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. CLINICAL TRIALS REGISTRATION: NCT01883609.


Asunto(s)
Portadores de Fármacos , Esquemas de Inmunización , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Adenoviridae/genética , Adolescente , Adulto , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Voluntarios Sanos , Humanos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Proteínas Protozoarias/administración & dosificación , Resultado del Tratamiento , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Adulto Joven
6.
Cell Microbiol ; 17(2): 191-206, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25154861

RESUMEN

Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions.


Asunto(s)
Cuerpos Basales/fisiología , Malaria/transmisión , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Culicidae/parasitología , Técnicas de Inactivación de Genes , Ratones , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/genética
7.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25336730

RESUMEN

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Epítopos/inmunología , Femenino , Vectores Genéticos , Humanos , Interferón gamma/inmunología , Hígado/virología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto Joven
8.
Antimicrob Agents Chemother ; 59(6): 3298-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801574

RESUMEN

In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z' factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 µM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Femenino , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Azul de Metileno/farmacología , Plasmodium falciparum/genética , ARN Mensajero/genética , Tioestreptona/farmacología
9.
Antimicrob Agents Chemother ; 59(2): 950-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25421480

RESUMEN

Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.


Asunto(s)
Antimaláricos/uso terapéutico , Azepinas/uso terapéutico , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Quinazolinas/uso terapéutico , Animales , Antimaláricos/química , Azepinas/química , Femenino , Células Hep G2 , Histona Metiltransferasas , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Ratones SCID , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Quinazolinas/química
10.
Cell Microbiol ; 16(5): 734-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24612056

RESUMEN

Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission.


Asunto(s)
Fenómenos Biomecánicos , Plasmodium/citología , Plasmodium/fisiología , Actinas/metabolismo , Imagenología Tridimensional , Locomoción , Microscopía , Miosinas/metabolismo , Imagen Óptica
11.
Exp Parasitol ; 149: 74-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25541384

RESUMEN

The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzii mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei/Anopheles stephensi system. In the natural species combination P. falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei/An. stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P. berghei/An. stephensi system.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Animales , Portador Sano/parasitología , Niño , Preescolar , Femenino , Humanos , Malaria/parasitología , Malaria/transmisión , Malaria Falciparum/parasitología , Ratones
12.
Proc Natl Acad Sci U S A ; 109(21): 8298-303, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566611

RESUMEN

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Piridinas/farmacología , Quinolonas/farmacología , Animales , Antimaláricos/química , Células Cultivadas , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Hepatocitos/citología , Hepatocitos/parasitología , Macaca mulatta , Malaria Falciparum/parasitología , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium cynomolgi/efectos de los fármacos , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Piridinas/química , Quinolonas/química
13.
Infect Immun ; 82(10): 4348-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092912

RESUMEN

A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen.


Asunto(s)
Portadores de Fármacos , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium vivax/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Baculoviridae/genética , Transmisión de Enfermedad Infecciosa/prevención & control , Femenino , Vectores Genéticos , Malaria/transmisión , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Ratones , Ratones Endogámicos BALB C , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
15.
PLoS Pathog ; 8(9): e1002948, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028336

RESUMEN

Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl(-) mutants, with global phosphorylation studies of ookinete differentiation from 1.5-24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.


Asunto(s)
Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Plasmodium berghei/enzimología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Alveolados/química , Alveolados/genética , Secuencias de Aminoácidos , Animales , Anopheles/parasitología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Diferenciación Celular , Genes Protozoarios , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Análisis de Secuencia de ADN , Viridiplantae/química
16.
Malar J ; 13: 315, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25124718

RESUMEN

BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.


Asunto(s)
Metabolismo Energético , Flagelos/fisiología , Células Germinativas/química , Glucólisis , Plasmodium berghei/química , Plasmodium berghei/fisiología , Proteoma/análisis , Animales , Femenino , Locomoción , Masculino , Ratones
17.
Antimicrob Agents Chemother ; 57(7): 3268-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23629698

RESUMEN

It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Malaria Falciparum/tratamiento farmacológico , Azul de Metileno/farmacología , Plasmodium falciparum/fisiología , Tioestreptona/farmacología
18.
Mol Ther ; 20(12): 2355-68, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23089736

RESUMEN

The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.


Asunto(s)
Antígenos de Protozoos/inmunología , Culicidae/parasitología , Culicidae/patogenicidad , Vacunas contra la Malaria/uso terapéutico , Proteína 1 de Superficie de Merozoito/inmunología , Adenovirus de los Simios/genética , Animales , Citometría de Flujo , Humanos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Orthopoxvirus/inmunología , Pan troglodytes/virología
19.
PLoS Med ; 9(2): e1001169, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22363211

RESUMEN

BACKGROUND: Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. METHODS AND FINDINGS: Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. CONCLUSIONS: These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/clasificación , Culicidae/parasitología , Resistencia a Múltiples Medicamentos , Humanos , Hígado/parasitología , Malaria/parasitología , Malaria/transmisión , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Ratones/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium yoelii/crecimiento & desarrollo , Especificidad de la Especie
20.
Mol Microbiol ; 82(2): 462-74, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21958024

RESUMEN

The malaria life cycle relies on the successful transfer of the parasite between its human and mosquito hosts. We identified a Plasmodium berghei secreted protein (PBANKA_131270) that plays distinct roles in both the mammal-to-mosquito and the mosquito-to-mammal transitions. This protein, here named gamete egress and sporozoite traversal (GEST), plays an important role in the egress of male and female gametes from the vertebrate red blood cell. Interestingly, GEST is also required following the bite of the infected mosquito, for sporozoite progression through the skin. We found PbGEST to be secreted shortly after activation of the intraerythrocytic gametocyte, and during sporozoite migration. These findings indicate that a single malaria protein may have pleiotropic roles in different parasites stages mediating transmission between its insect and mammalian hosts.


Asunto(s)
Anopheles/parasitología , Malaria/parasitología , Malaria/transmisión , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Vertebrados/parasitología , Animales , Femenino , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/genética , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA