Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 292(1): 112-120, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872191

RESUMEN

Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Dioxolanos/farmacología , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Glutatión/metabolismo , Neoplasias Pancreáticas/patología , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Unión Proteica , Conformación Proteica , Células Tumorales Cultivadas
2.
Bioorg Med Chem ; 25(4): 1320-1328, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28038940

RESUMEN

Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles. Compound 5 exhibited the greatest potency in RAS-mutated and wild-type RAS cell lines from various cancer types. A biotinylated derivative of 5, 27, was used to verify TAK1 binding in cells. The newly described inhibitors constitute useful tools for further development of multi-targeting TAK1-centered inhibitors for cancer and other diseases.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
3.
Nat Struct Mol Biol ; 12(2): 191-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15665872

RESUMEN

p115RhoGEF, a guanine nucleotide exchange factor (GEF) for Rho GTPase, is also a GTPase-activating protein (GAP) for G12 and G13 heterotrimeric Galpha subunits. The GAP function of p115RhoGEF resides within the N-terminal region of p115RhoGEF (the rgRGS domain), which includes a module that is structurally similar to RGS (regulators of G-protein signaling) domains. We present here the crystal structure of the rgRGS domain of p115RhoGEF in complex with a chimera of Galpha13 and Galphai1. Two distinct surfaces of rgRGS interact with Galpha. The N-terminal betaN-alphaN hairpin of rgRGS, rather than its RGS module, forms intimate contacts with the catalytic site of Galpha. The interface between the RGS module of rgRGS and Galpha is similar to that of a Galpha-effector complex, suggesting a role for the rgRGS domain in the stimulation of the GEF activity of p115RhoGEF by Galpha13.


Asunto(s)
Evolución Molecular , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Alineación de Secuencia , Electricidad Estática
4.
Structure ; 16(10): 1532-43, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18940608

RESUMEN

G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward Galpha13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP*AlF (transition state) and GTPgammaS (Michaelis complex). PRG-rgRGS interacts extensively with the helical domain and the effector-binding sites on Galpha13 through contacts that are largely conserved in all three nucleotide-bound states, although PRG-rgRGS has highest affinity to the Michaelis complex. An acidic motif in the N terminus of PRG-rgRGS occupies the GAP binding site of Galpha13 and is flexible in the GDP*AlF complex but well ordered in the GTPgammaS complex. Replacement of key residues in this motif with their counterparts in p115RhoGEF confers GAP activity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas RGS/química , Ratas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/genética
5.
Adv Protein Chem ; 74: 189-228, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17854659

RESUMEN

Monomeric Rho GTPases regulate cellular dynamics through remodeling of the cytoskeleton, modulation of immediate signaling pathways, and longer-term regulation of gene transcription. One family of guanine nucleotide exchange factors for Rho proteins (RhoGEFs) provides a direct pathway for regulation of RhoA by cell surface receptors coupled to heterotrimeric G proteins. Some of these RhoGEFs also contain RGS domains that can attenuate signaling by the G(12) and G(13) proteins. The regulation provided by these RhoGEFs is defined by their selective regulation by specific G proteins, phosphorylation by kinases, and potential localization with signaling partners. Evidence of their physiological importance is derived from gene knockouts in Drosophila and mice. Current understanding of the basic regulatory mechanisms of these RhoGEFs is discussed. An overview of identified interactions with other signaling proteins suggests the growing spectrum of their involvement in numerous signaling pathways.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Unión al GTP Heterotriméricas/genética
6.
DNA Repair (Amst) ; 12(10): 817-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23948094

RESUMEN

DNA polymerase kappa (Polκ) bypasses planar polycyclic N2-guanine adducts in an error-free manner. Cholesterol derivatives may interact with DNA to form similarly bulky lesions. In accordance, these studies examined whether increased mutagenesis of DNA accompanies hypercholesterolemia in Polk-/- mice. These mice also carried apoE gene knockouts to ensure increased levels of plasma cholesterol following exposure to a high cholesterol diet. The mice carried a reporter transgene (the λ-phage cII gene) for subsequent quantitative analysis of mutagenesis in various tissues. We observed significantly increased mutation frequencies in several organs of apoE-/-Polk-/- mice following a high cholesterol diet, compared to those remaining on a standard diet. Regardless of dietary regime, the mutation frequency in many organs was significantly higher in apoE-/-Polk-/- than in apoE-/-Polk+/+ mice. As expected for polycyclic guanine adducts, the mutations mainly consisted of G:C transversions. The life expectancy of apoE-/-Polk-/- mice maintained on a high cholesterol diet was reduced compared to apoE-/-Polk+/+ mice. Overall, this study demonstrates a role for Polκ in bypass of cholesterol-induced guanine lesions.


Asunto(s)
Colesterol en la Dieta/administración & dosificación , Daño del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Hipercolesterolemia/genética , Mutagénesis , Animales , Colesterol en la Dieta/sangre , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Hipercolesterolemia/metabolismo , Ratones , Ratones Noqueados , Tasa de Mutación , Mutación Puntual
8.
J Biol Chem ; 278(11): 9912-9, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12525488

RESUMEN

Structural requirements for function of the Rho GEF (guanine nucleotide exchange factor) regulator of G protein signaling (rgRGS) domains of p115RhoGEF and homologous exchange factors differ from those of the classical RGS domains. An extensive mutagenesis analysis of the p115RhoGEF rgRGS domain was undertaken to determine its functional interface with the Galpha(13) subunit. Results indicate that there is global resemblance between the interaction surface of the rgRGS domain with Galpha(13) and the interactions of RGS4 and RGS9 with their Galpha substrates. However, there are distinct differences in the distribution of functionally critical residues between these structurally similar surfaces and an additional essential requirement for a cluster of negatively charged residues at the N terminus of rgRGS. Lack of sequence conservation within the N terminus may also explain the lack of GTPase-activating protein (GAP) activity in a subset of the rgRGS domains. For all mutations, loss of functional GAP activity is paralleled by decreases in binding to Galpha(13). The same mutations, when placed in the context of the p115RhoGEF molecule, produce deficiencies in GAP activity as observed with the rgRGS domain alone but show no attenuation of the regulation of Rho exchange activity by Galpha(13). This suggests that the rgRGS domain may serve a structural or allosteric role in the regulation of the nucleotide exchange activity of p115RhoGEF on Rho by Galpha(13).


Asunto(s)
Proteínas de Unión al ADN/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas RGS/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Vectores Genéticos , Humanos , Insectos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Factores de Intercambio de Guanina Nucleótido Rho , Homología de Secuencia de Aminoácido , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA