Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Sci ; 129(11): 2170-81, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076521

RESUMEN

Cytosolic dynamin-related protein 1 (Drp1, also known as DNM1L) is required for both mitochondrial and peroxisomal fission. Drp1-dependent division of these organelles is facilitated by a number of adaptor proteins at mitochondrial and peroxisomal surfaces. To investigate the interplay of these adaptor proteins, we used gene-editing technology to create a suite of cell lines lacking the adaptors MiD49 (also known as MIEF2), MiD51 (also known as MIEF1), Mff and Fis1. Increased mitochondrial connectivity was observed following loss of individual adaptors, and this was further enhanced following the combined loss of MiD51 and Mff. Moreover, loss of adaptors also conferred increased resistance of cells to intrinsic apoptotic stimuli, with MiD49 and MiD51 showing the more prominent role. Using a proximity-based biotin labeling approach, we found close associations between MiD51, Mff and Drp1, but not Fis1. Furthermore, we found that MiD51 can suppress Mff-dependent enhancement of Drp1 GTPase activity. Our data indicates that Mff and MiD51 regulate Drp1 in specific ways to promote mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Muerte Celular , Línea Celular , Edición Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxisomas/metabolismo , Coloración y Etiquetado
2.
Hum Mol Genet ; 24(19): 5404-15, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26160915

RESUMEN

Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Portadoras/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Células HEK293 , Humanos , Lactante , Masculino , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares
3.
Cell Mol Life Sci ; 72(19): 3695-707, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26059473

RESUMEN

Mitochondria are dynamic organelles whose shape is regulated by the opposing processes of fission and fusion, operating in conjunction with organelle distribution along the cytoskeleton. The importance of fission and fusion homeostasis has been highlighted by a number of disease states linked to mutations in proteins involved in regulating mitochondrial morphology, in addition to changes in mitochondrial dynamics in Alzheimer's, Huntington's and Parkinson's diseases. While a number of mitochondrial morphology proteins have been identified, how they co-ordinate to assemble the fission apparatus is not clear. In addition, while the master mediator of mitochondrial fission, dynamin-related protein 1, is conserved throughout evolution, the adaptor proteins involved in its mitochondrial recruitment are not. This review focuses on our current understanding of mitochondrial fission and the proteins that regulate this process in cell homeostasis, with a particular focus on the recent mechanistic insights based on protein structures.


Asunto(s)
Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/metabolismo , Homeostasis/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Plaquinas/metabolismo , Cardiolipinas/metabolismo , Dinaminas , GTP Fosfohidrolasas/química , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Mitocondriales/química , Especies Reactivas de Oxígeno/metabolismo
4.
J Cell Biol ; 204(4): 477-86, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24515348

RESUMEN

Mitochondrial fission is important for organelle transport, inheritance, and turnover, and alterations in fission are seen in neurological disease. In mammals, mitochondrial fission is executed by dynamin-related protein 1 (Drp1), a cytosolic guanosine triphosphatase that polymerizes and constricts the organelle. Recruitment of Drp1 to mitochondria involves receptors including Mff, MiD49, and MiD51. MiD49/51 form foci at mitochondrial constriction sites and coassemble with Drp1 to drive fission. Here, we solved the crystal structure of the cytosolic domain of human MiD51, which adopts a nucleotidyltransferase fold. Although MiD51 lacks catalytic residues for transferase activity, it specifically binds guanosine diphosphate and adenosine diphosphate. MiD51 mutants unable to bind nucleotides were still able to recruit Drp1. Disruption of an additional region in MiD51 that is not part of the nucleotidyltransferase fold blocked Drp1 recruitment and assembly of MiD51 into foci. MiD51 foci are also dependent on the presence of Drp1, and after scission they are distributed to daughter organelles, supporting the involvement of MiD51 in the fission apparatus.


Asunto(s)
Dinaminas/fisiología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Adenosina Difosfato/metabolismo , Animales , Western Blotting , Células Cultivadas , Cristalización , Cristalografía por Rayos X , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Guanosina Difosfato/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA