Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Pharm ; 17(1): 50-58, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31742408

RESUMEN

DNA-targeting indolinobenzodiazepine dimer (IGN) payloads are used in several clinical-stage antibody-drug conjugates. IGN drugs alkylate DNA through the single imine moiety present in the dimer in contrast to the pyrrolobenzodiazepine dimer drugs, such as talirine and tesirine, which contain two imine moieties per dimer and cross-link DNA. This study explored the mechanism of binding of IGN to DNA in cells and to synthetic duplex and hairpin oligonucleotides. New, highly sensitive IGN-DNA binding enzyme-linked immunosorbent assay methods were developed using biotinylated IGN analogues (monoimine, diimine, and diamine IGNs) and digoxigenin-labeled duplex oligonucleotides, which allowed the measurement of drug-DNA adducts in viable cells at concentrations below IC50. Furthermore, the release of free drug from the IGN-DNA adduct upon treatment with nuclease ex vivo was tested under physiological conditions. The monoimine IGN drug formed a highly stable adduct with DNA in cells, with stability similar to that of the diimine drug analogue. Both monoimine and diimine IGN-DNA adducts released free drugs upon DNA cleavage by nuclease at 37 °C, although more free drug was released from the monoimine compared to the diimine adduct, which presumably was partly cross-linked. The strong binding of the monoimine IGN drug to duplex DNA results from both the noncovalent IGN-DNA interaction and the covalent bond formation between the 2-amino group of a guanine residue and the imine moiety in IGN.


Asunto(s)
Antineoplásicos/química , Benzodiazepinas/química , Aductos de ADN/química , ADN/química , Inmunoconjugados/farmacología , Indoles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Aductos de ADN/metabolismo , Dimerización , Ensayo de Immunospot Ligado a Enzimas , Humanos , Iminas/química , Inmunoconjugados/administración & dosificación , Oligonucleótidos/química , Pirroles/química
2.
Mol Pharm ; 16(12): 4817-4825, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31609629

RESUMEN

Although peptide linkers are used in multiple clinical-stage ADCs, there are only few reports on optimizing peptide linkers for efficient lysosomal proteolysis and for stability in circulation. We screened multiple dipeptide linkers for efficiency of proteolysis and compared them to the dipeptide linkers currently being evaluated in the clinic: Val-Cit, Val-Ala, and Ala-Ala. Lead dipeptide linkers selected from the initial screen were incorporated into ADCs with indolinobenzodiazepine dimer (IGN) payloads to evaluate cellular processing, in vitro cytotoxic activity, plasma stability, and in vivo efficacy. ADCs with several dipeptide linkers bearing l-amino acids showed faster lysosomal processing in target cancer cells compared to the l-Ala-l-Ala linked ADC. These variances in linker processing rates did not result in different in vitro and in vivo activities among peptide linker ADCs, presumably due to accumulation of threshold cytotoxic catabolite levels for ADCs of several peptide linkers in the cell lines and xenografts tested. ADCs with l-amino acid dipeptide linkers exhibited superior in vitro cytotoxic potencies in multiple cell lines compared to an ADC with a d-Ala-d-Ala dipeptide linker and an ADC with a noncleavable linker. This work adds to the toolbox of stable, lysosomally cleavable peptide linkers for ADCs.


Asunto(s)
Anticuerpos/química , Biopolímeros/química , Dipéptidos/química , Inmunoconjugados/química , Lisosomas/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones SCID , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Bioconjug Chem ; 26(11): 2261-78, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26355774

RESUMEN

Antibody anilino maytansinoid conjugates (AaMCs) have been prepared in which a maytansinoid bearing an aniline group was linked through the aniline amine to a dipeptide, which in turn was covalently attached to a desired monoclonal antibody. Several such conjugates were prepared utilizing different dipeptides in the linkage including Gly-Gly, l-Val-l-Cit, and all four stereoisomers of the Ala-Ala dipeptide. The properties of AaMCs could be altered by the choice of dipeptide in the linker. Each of the AaMCs, except the AaMC bearing a d-Ala-d-Ala peptide linker, displayed more bystander killing in vitro than maytansinoid ADCs that utilize disulfide linkers. In mouse models, the anti-CanAg AaMC bearing a d-Ala-l-Ala dipeptide in the linker was shown to be more efficacious against heterogeneous HT-29 xenografts than maytansinoid ADCs that utilize disulfide linkers, while both types of the conjugates displayed similar tolerabilities.


Asunto(s)
Compuestos de Anilina/química , Antineoplásicos Fitogénicos/química , Inmunoconjugados/química , Maitansina/química , Compuestos de Anilina/farmacocinética , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Maitansina/farmacocinética , Maitansina/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico
4.
Mol Pharm ; 12(6): 1752-61, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25738394

RESUMEN

A new, sensitive ELISA method has been developed which measures catabolites in cells and media upon processing of antibody-drug conjugates (ADCs) by target cancer cells. This ELISA method, exemplified for maytansinoid ADCs, uses competitive inhibition by a maytansinoid analyte of the binding of biotinylated antimaytansine antibody to an immobilized BSA-maytansinoid conjugate. Synthetic standards of several maytansinoid catabolites derived from ADCs with different linkers were tested and showed similar inhibition curves, with an EC50 of about 0.1 nM (0.03 pmol in an assay volume of 0.25 mL). This high sensitivity allowed quantification of catabolites from a methanolic cell extract and from the medium, generated from an ADC in 1 day using only about 1 million cells. The processing of anti-EpCAM and anti-CanAg ADCs with noncleavable linker (SMCC-DM1), disulfide linker (SPDB-DM4), and charged sulfonate-bearing disulfide linker (sulfo-SPDB-DM4), each containing an average of about four maytansinoid molecules per antibody, were compared in colon cancer cell lines (COLO 205 and HT-29). An 8-10-fold higher total level of catabolite was observed for anti-CanAg ADCs than for anti-EpCAM ADCs upon processing by COLO 205 cells, consistent with a higher cell-surface expression of CanAg. In a multidrug resistant HCT-15 colon cancer cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was not cytotoxic and showed a significantly lower level of catabolite within cells compared to that in medium, presumably due to Pgp-mediated efflux of the nonpolar DM4 catabolite. In contrast, sulfo-SPDB-DM4 and SMCC-DM1 linker conjugates were cytotoxic, which correlated with higher amounts of catabolites found within the HCT-15 cells relative to amounts in medium. In a nonmultidrug resistant HT-29 cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was cytotoxic, with most of the catabolite found in cells and little in the medium. In conclusion, this highly sensitive ELISA method for measurement of ADC catabolite is convenient for screening multiple ADC parameters such as linkers and antibodies in a number of cell lines, does not require concentration of sample or extraction of media, and is complementary to other reported methods such as radiolabeling of ADCs or mass spectrometry.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoconjugados/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HT29 , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/química , Maitansina/química , Reproducibilidad de los Resultados
5.
J Pharm Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876368

RESUMEN

The use of recombinant adeno-associated virus (AAV) vectors is a popular choice for in vivo gene therapy, with hundreds of ongoing clinical trials targeting various genetic diseases. However, due to limited material availability and the complexity of AAV structure, there is a critical lack of comprehensive studies on AAV degradation pathways. In this study, we intended to elucidate the degradation pathways for a model AAV9 with GFP as the transgene under relevant stressed conditions. We assessed a diverse set of critical quality attributes and examined the overall impact of various stresses on transgene expression. This assessment revealed various degradation mechanisms of AAV9 and demonstrated the potential risk of a base formulation in causing AAV9 instability and potency loss under thermal stress at 25 and 40 °C while maintaining stability under freeze-thaw stress, interfacial stress due to membrane filtration, and short-term storage of up to 4 weeks at 5 °C.

6.
Front Immunol ; 15: 1293883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455057

RESUMEN

Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFß. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFß signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFß at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFß-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis.


Asunto(s)
Interleucina-11 , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Fibrosis , Miofibroblastos/metabolismo
7.
Bioconjug Chem ; 22(4): 728-35, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21391620

RESUMEN

Antibody-maytansinoid conjugates (AMCs) are targeted chemotherapeutic agents consisting of a potent microtubule-depolymerizing maytansinoid (DM1 or DM4) attached to lysine residues of a monoclonal antibody (mAb) using an uncleavable thioether linker or a stable disulfide linker. Most of the administered dose of an antibody-based therapeutic is slowly catabolized by the liver and other tissues of the reticuloendothelial system. Maytansinoids released from an AMC during this catabolic process could potentially be a source of toxicity. To investigate this, we isolated and identified liver metabolites in mice for three different [(3)H]AMCs with structures similar to those currently undergoing evaluation in the clinic. We then synthesized each metabolite to confirm the identification and assessed their cytotoxic potencies when added extracellularly. We found that the uncleavable mAb-SMCC-[(3)H]DM1 conjugate was degraded to a single major maytansinoid metabolite, lysine-SMCC-[(3)H]DM1, that was nearly 50-fold less cytotoxic than maytansine. The two disulfide-linked conjugates, mAb-SPP-[(3)H]DM1 and mAb-SPDB-[(3)H]DM4, were also found to be catabolized to the analogous lysine-linked maytansinoid metabolites. However, subsequent reduction, S-methylation, and NADPH-dependent oxidation steps in the liver yielded the corresponding S-methyl sulfoxide and S-methyl sulfone derivatives. The cytotoxic potencies of the oxidized maytansinoids toward several human carcinoma cell lines were found to be 5- to 50-fold less potent than maytansine. Our results suggest that liver plays an important role in the detoxification of both cleavable and uncleavable AMCs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Diseño de Fármacos , Hígado/metabolismo , Maitansina/metabolismo , Animales , Anticuerpos Monoclonales/química , Femenino , Hígado/química , Maitansina/análogos & derivados , Maitansina/química , Ratones , Ratones Endogámicos , Estructura Molecular
8.
Bioconjug Chem ; 22(4): 717-27, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21425776

RESUMEN

In this report, we describe the synthesis of a panel of disulfide-linked huC242 (anti-CanAg) antibody maytansinoid conjugates (AMCs), which have varying levels of steric hindrance around the disulfide bond, in order to investigate the relationship between stability to reduction of the disulfide linker and antitumor activity of the conjugate in vivo. The conjugates were first tested for stability to reduction by dithiothreitol in vitro and for plasma stability in CD1 mice. It was found that the conjugates having the more sterically hindered disulfide linkages were more stable to reductive cleavage of the maytansinoid in both settings. When the panel of conjugates was tested for in vivo efficacy in two human colon cancer xenograft models in SCID mice, it was found that the conjugate with intermediate disulfide bond stability having two methyl groups on the maytansinoid side of the disulfide bond and no methyl groups on the linker side of the disulfide bond (huC242-SPDB-DM4) displayed the best efficacy. The ranking of in vivo efficacies of the conjugates was not predicted by their in vitro potencies, since all conjugates were highly active in vitro, including a huC242-SMCC-DM1 conjugate with a noncleavable linkage which showed only marginal activity in vivo. These data suggest that factors in addition to intrinsic conjugate potency and conjugate half-life in plasma influence the magnitude of antitumor activity observed for an AMC in vivo. We provide evidence that bystander killing of neighboring nontargeted tumor cells by diffusible cytotoxic metabolites produced from target cell processing of disulfide-linked antibody-maytansinoid conjugates may be one additional factor contributing to the activity of these conjugates in vivo.


Asunto(s)
Anticuerpos/química , Antineoplásicos/química , Carbono/química , Neoplasias del Colon/tratamiento farmacológico , Disulfuros/química , Maitansina/química , Animales , Anticuerpos/sangre , Anticuerpos/farmacología , Antineoplásicos/sangre , Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Disulfuros/sangre , Disulfuros/farmacología , Humanos , Maitansina/sangre , Maitansina/farmacología , Ratones , Ratones Endogámicos , Ratones SCID , Conformación Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Bioconjug Chem ; 21(1): 84-92, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19891424

RESUMEN

Antibody-drug conjugates (ADCs) are designed to eradicate cancer cells that express the target antigen on their cell surface. A key component of an ADC is the linker that covalently connects the cytotoxic agent to the antibody. Several antibody-maytansinoid conjugates prepared with disulfide-based linkers such as those targeting the CanAg antigen have been shown to display more activity in preclinical mouse xenograft models than corresponding conjugates prepared with uncleavable thioether-based linkers. To investigate how the linker influences delivery and activation of antibody-maytansinoid conjugates, we isolated and characterized the [(3)H]maytansinoids from CanAg-positive tumor tissues following a single intravenous administration of 300 microg/kg (based on maytansinoid dose) of anti-CanAg antibody (huC242)-(3)H-maytansinoid conjugates prepared with cleavable disulfide linkers and an uncleavable thioether linker. We identified three target-dependent tumor metabolites of the disulfide-linked huC242-SPDB-DM4, namely, lysine-N(epsilon)-SPDB-DM4, DM4, and S-methyl-DM4. We found similar metabolites for the less hindered disulfide-linked huC242-SPP-DM1 conjugate with the exception that no S-methyl-DM1 was detected. The sole metabolite of the uncleavable thioether-linked huC242-SMCC-DM1 was lysine-N(epsilon)-SMCC-DM1. The AUC for the metabolites of huC242-SMCC-DM1 at the tumor over 7 d was about 2-fold greater than the corresponding AUC for the metabolites of the disulfide-linked conjugates. The lipophilic metabolites of the disulfide-linked conjugates were found to be nearly 1000 times more cytotoxic than the more hydrophilic lysine-N(epsilon)-linker-maytansinoids in cell-based viability assays when added extracellularly. The cell killing properties associated with the lipophilic metabolites of the disulfide-linked conjugates (DM4 and S-methyl-DM4, and DM1) provide an explanation for the superior in vivo efficacy that is often observed with antibody-maytansinoid conjugates prepared with disulfide-based linkers in xenograft mouse models.


Asunto(s)
Anticuerpos/metabolismo , Disulfuros/química , Inmunoconjugados/metabolismo , Inmunoconjugados/uso terapéutico , Maitansina/metabolismo , Neoplasias/metabolismo , Sulfuros/química , Animales , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Maitansina/química , Maitansina/inmunología , Maitansina/uso terapéutico , Ratones , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Methods Mol Biol ; 525: 445-67, xiv, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19252846

RESUMEN

Conjugates of antibodies with cytotoxic agents offer a targeted therapeutic strategy against cancer cells expressing target antigens. Several antibodies against various cancer cell-surface antigens have been conjugated with different cytotoxic agents that inhibit essential cellular targets such as microtubules or DNA. Antibody-cytotoxic agent conjugates (ACCs) against several types of cancer are currently in advanced stages of clinical trials and one, gemtuzumab ozogamicin (Mylotarg), is approved for the treatment of acute myeloid leukemia. The linker group connecting the antibody to the cytotoxic agent is an important feature of the ACC, modulating the release of the active cytotoxic agent in the targeted cell. Several linker strategies employed for ACCs in current clinical trials include cleavable linkers with disulfide, hydrazone, lysosomal protease-substrate groups, and non-cleavable linkers. This chapter describes the methods of preparation of conjugates of antibodies with small-molecule cytotoxic agents (maytansinoids, calicheamicin, and auristatins) bearing different linkers. Methods to evaluate the in vitro cytotoxicity and in vivo anti-tumor efficacy of ACC are described in brief. Analytical methods are described to evaluate the mechanism of cellular processing of the ACCs with different linkers and the generation of the active metabolites.


Asunto(s)
Anticuerpos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Biología Molecular/métodos , Animales , Anticuerpos/química , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Disulfuros/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Glicosilación/efectos de los fármacos , Humanos , Espectrometría de Masas , Ratones
11.
ACS Med Chem Lett ; 10(8): 1211-1215, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413807

RESUMEN

Indolinobenzodiazepine DNA alkylators (IGNs) are the cytotoxic payloads in antibody-drug conjugates (ADCs) currently undergoing Phase I clinical evaluation (IMGN779, IMGN632, and TAK164). These ADCs possess linkers that have been incorporated into a central substituted phenyl spacer. Here, we present an alternative strategy for the IGNs, linking through a carbamate at the readily available N-10 amine present in the monoimine containing dimer. As a result, we have designed a series of N-10 linked IGN ADCs with a wide range of in vitro potency and tolerability, which may allow us to better match an IGN with a particular target based on the potential dosing needs.

12.
Cancer Res ; 66(4): 2391-402, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16489046

RESUMEN

Insulin-like growth factor-I (IGF-I), IGF-II, and insulin have all been implicated in regulating several aspects of the malignant phenotype via the type I IGF receptor (IGF1R) and insulin receptor (IR). We have previously shown that a chimeric single-chain antibody against IGF1R (scFv-Fc) and a murine antibody EM164 down-regulate IGF1R, making breast cancer cells unresponsive to IGF-I. To determine if IR signaling is affected, we examined regulation of IR in MCF-7 cells after exposure to these antibodies. Surprisingly, both scFv-Fc and EM164 resulted in decreased levels of IR in vitro and in vivo despite their lack of reactivity against IR. Twenty-four-hour pretreatment with EM164 also inhibited insulin-mediated phosphorylation of IR and insulin-stimulated proliferation of MCF-7 cells. Neither scFv-Fc nor EM164 caused down-regulation of IR in cells that express very low levels of IGF1R or no IGF1R. Expression of IGF1R was required for IR down-regulation, which was specific as neither antibody caused down-regulation of beta1 integrin or epidermal growth factor receptor. Reagents that disrupt lipid rafts inhibited IR down-regulation by the antibodies, suggesting that IR in close physical proximity to IGF1R in lipid rafts was being endocytosed. Our data show that down-regulation of IR by monoclonal antibodies against IGF1R requires the coexpression of IGF1R and may be due to endocytosis of hybrid IR/IGF1R or holo-IR. Thus, antibodies against IGF1R provide inhibition of both IGF and insulin signaling in cancer cells.


Asunto(s)
Anticuerpos/farmacología , Neoplasias de la Mama/terapia , Receptor IGF Tipo 1/inmunología , Receptor de Insulina/antagonistas & inhibidores , Animales , Anticuerpos/inmunología , Especificidad de Anticuerpos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Fragmentos de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/farmacología , Microdominios de Membrana/metabolismo , Ratones , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/biosíntesis , Receptor de Insulina/biosíntesis , Receptor de Insulina/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Cancer Ther ; 17(3): 650-660, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29440292

RESUMEN

Tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity. Here, we describe the development of a new class of potent DNA-interacting agents wherein changing the mechanism of action from a cross-linker to a DNA alkylator improves the tolerability of the ADC. ADCs containing the DNA alkylator displayed similar in vitro potency, but improved bystander killing and in vivo efficacy, compared with those of the cross-linker. Thus, the improved in vivo tolerability and antitumor activity achieved in rodent models with ADCs of the novel DNA alkylator could provide an efficacious, yet safer option for cancer treatment. Mol Cancer Ther; 17(3); 650-60. ©2018 AACR.


Asunto(s)
Inmunoconjugados/farmacología , Sustancias Intercalantes/farmacología , Neoplasias/tratamiento farmacológico , Índice Terapéutico de los Medicamentos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , ADN/genética , ADN/metabolismo , Diseño de Fármacos , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Ratones , Neoplasias/patología , Carga Tumoral/efectos de los fármacos
14.
J Child Neurol ; 21(12): 1067-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17156700

RESUMEN

Three normal children with headache occurring only with exertion were advised to try "head cooling" (eg, immersion of the head in cold water, cold water poured over the head, application of a cold, wet towel or ice pack) at the onset of headache. The patients were followed up quarterly as outpatients, and the effectiveness of head cooling in terms of the frequency of headaches, intensity (interference with play), duration, and side effects was assessed over 18 months.


Asunto(s)
Temperatura Corporal/fisiología , Frío , Ejercicio Físico/fisiología , Cefaleas Primarias/etiología , Cefaleas Primarias/terapia , Hipotermia Inducida/métodos , Adolescente , Arteria Carótida Externa/fisiopatología , Niño , Cabeza/fisiopatología , Cefaleas Primarias/fisiopatología , Humanos , Masculino , Deportes , Resultado del Tratamiento , Vasoconstricción/fisiología
15.
Cancer Res ; 63(16): 5073-83, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12941837

RESUMEN

An antagonistic monoclonal antibody, designated EM164, has been developed which binds specifically to the human insulin-like growth factor I receptor (IGF-IR) and inhibits the proliferation and survival functions of the receptor in cancer cells. EM164 was initially selected by a rapid cell-based screen of hybridoma supernatants to identify antibodies that bind to IGF-IR but not to the homologous insulin receptor and that show maximal inhibition of IGF-I-stimulated autophosphorylation of IGF-IR. EM164 binds tightly to IGF-IR with a dissociation constant K(d) of 0.1 nM, inhibits binding of IGF-I and antagonizes its effects on cells completely, and has no agonistic activity on its own. EM164 inhibits IGF-I-, IGF-II-, and serum-stimulated proliferation and survival of diverse human cancer cell lines in vitro, including breast, lung, colon, cervical, ovarian, pancreatic, melanoma, prostate, neuroblastoma, rhabdomyosarcoma, and osteosarcoma cancer lines. It also suppresses the autocrine or paracrine proliferation of several cancer cell lines. EM164 was the most potent antagonistic anti-IGF-IR antibody tested when compared with several commercially available antibodies. The in vitro inhibitory effect could be extended to in vivo tumor models, where EM164 caused regression of established BxPC-3 human pancreatic tumor xenografts in SCID mice. The antitumor effect of treatment with EM164 could be enhanced by combining it with the cytotoxic agent gemcitabine. These data support the development of EM164 as a candidate therapeutic agent that targets IGF-IR function in cancer cells.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Experimentales/terapia , Receptor IGF Tipo 1/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Ciclo Celular , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones SCID , Neoplasias Experimentales/patología , Fosforilación , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Trasplante Heterólogo , Células Tumorales Cultivadas
17.
Mol Cancer Ther ; 15(8): 1870-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216304

RESUMEN

The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Inmunoconjugados/farmacología , Animales , Antineoplásicos Alquilantes/química , Efecto Espectador , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/química , ADN/metabolismo , Aductos de ADN , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Inmunoconjugados/química , Ratones , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Mol Cancer Ther ; 15(6): 1311-20, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197308

RESUMEN

A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR.


Asunto(s)
Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Receptores ErbB/antagonistas & inhibidores , Inmunoconjugados/administración & dosificación , Maitansina/química , Neoplasias/tratamiento farmacológico , Péptidos/síntesis química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Dosis Máxima Tolerada , Ratones , Ratones SCID , Péptidos/química , Péptidos/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mol Cancer Ther ; 14(7): 1605-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25904506

RESUMEN

A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptor 1 de Folato/antagonistas & inhibidores , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Efecto Espectador/efectos de los fármacos , Línea Celular Tumoral , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Receptor 1 de Folato/inmunología , Humanos , Inmunoconjugados/inmunología , Maitansina/análogos & derivados , Maitansina/inmunología , Maitansina/farmacología , Ratones Desnudos , Ratones SCID , Terapia Molecular Dirigida/métodos , Neoplasias/inmunología , Neoplasias/metabolismo , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
20.
Chem Commun (Camb) ; 47(38): 10752-4, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21874179

RESUMEN

A novel pathway for ex vivo maytansinoid release from thioether linked antibody maytansinoid conjugates (AMCs) upon incubation in human plasma has been identified. A thioether succinimide-linked AMC can undergo chemical oxidation followed by sulfoxide elimination under mild aqueous conditions (pH 5.5-7.5, 37 °C). Oxidized thioether-linked AMCs exhibit high, target-specific cytotoxicity toward cancer cells.


Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Maitansina/química , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Inmunoconjugados/sangre , Inmunoconjugados/toxicidad , Maleimidas/química , Oxidación-Reducción , Polietilenglicoles/química , Ácidos Sulfénicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA