Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833476

RESUMEN

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Asunto(s)
Lipidómica , Nitrógeno , Fósforo , Azufre , Fósforo/metabolismo , Azufre/metabolismo , Nitrógeno/metabolismo , Adaptación Fisiológica , Sulfatos/metabolismo , Bacterias Anaerobias/metabolismo , Anaerobiosis
2.
Appl Environ Microbiol ; 88(2): e0176321, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731048

RESUMEN

Membrane-spanning lipids are present in a wide variety of archaea, but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C30, C32, and C34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C30 and C32 diabolic acids, i.e., dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but are preferably produced when the length of the acyl chains is not optimal. Compared with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) head groups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process is a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima that is also present in other bacteria producing sn-1-alkyl ether lipids but not plasmalogens, suggesting it is involved in the conversion of the ester-to-ether bond in the diabolic acids bound in membrane-spanning lipids. IMPORTANCE Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipid composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipid biosynthetic process, which can further clarify the pathway leading to the biosynthesis of these compounds.


Asunto(s)
Lípidos de la Membrana , Thermotoga maritima , Ácidos Dicarboxílicos , Éter , Éteres , Lípidos de la Membrana/metabolismo , Temperatura , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
3.
Antonie Van Leeuwenhoek ; 115(10): 1253-1264, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35965303

RESUMEN

Planctomycetes of the family Pirellulaceae are commonly addressed as budding aquatic bacteria with a complex lifestyle. Although this family is well represented by cultured and taxonomically characterized isolates, nearly all of them were obtained from brackish or marine habitats. The examples of described freshwater Pirellulaceae planctomycetes are limited to two species only, Pirellula staley and 'Anatilimnocola aggregata'. In this study, we characterized a novel freshwater planctomycete of the genus 'Anatilimnocola', strain PX40T, which was isolated from a boreal eutrophic lake. Strain PX40T was represented by budding, unpigmented, ellipsoidal to pear-shaped cells, which often occurred in characteristic flower-like rosettes. Cells were covered by bundles of fimbriae; crateriform-like structures were localized on a reproductive cell pole only. These planctomycetes were obligately aerobic, heterotrophic bacteria that utilized various sugars and some polysaccharides, and were highly sensitive to NaCl. Growth occurred in the pH range 5.0-7.5 (with an optimum at pH 6.5-7.0), and at temperatures between 15 and 30 °C (with an optimum at 22-25 °C). The major fatty acids of strain PX40T were C18:1ω9c, C16:0, and 16:1ω7c; cells also contained a wide variety of hydroxy- and dihydroxy-fatty acids and a C31:9 alkene. The major intact polar lipids were diacylglyceryl-(N,N,N)-trimethylhomoserines. The 16S rRNA gene sequence of strain PX40T displayed 96.6% similarity to that of 'Anatilimnocola aggregata' ETA_A8T. The genome of strain PX40T was 8.93 Mb in size and contained one copy of rRNA operon, 76 tRNA genes and 7092 potential protein-coding genes. The DNA G+C content was 57.8%. The ANI value between strain PX40T and 'Anatilimnocola aggregata' ETA_A8T was 78.3%, suggesting that these planctomycetes represent distinct species. We, therefore, propose a novel species of the genus 'Anatilimnocola', 'A. floriformis' sp. nov., with strain PX40T (= KCTC 92369T = VKM B-3621T = UQM 41463T) as the type strain.


Asunto(s)
Lagos , Planctomycetales , Alquenos , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , Azúcares
4.
Environ Microbiol ; 23(6): 2709-2728, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-31858660

RESUMEN

Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.


Asunto(s)
Microbiota , Archaea/genética , Bacterias/genética , Mar Negro , Metagenoma
5.
Environ Microbiol ; 23(6): 2729-2746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32291864

RESUMEN

Microorganisms attached to particles have been shown to be different from free-living microbes and to display diverse metabolic activities. However, little is known about the ecotypes associated with particles and their substrate preference in anoxic marine waters. Here, we investigate the microbial community colonizing particles in the anoxic and sulfide-rich waters of the Black Sea. We incubated beads coated with different substrates in situ at 1000 and 2000 m depth. After 6 h, the particle-attached microbes were dominated by Gamma- and Alpha-proteobacteria, and groups related to the phyla Latescibacteria, Bacteroidetes, Planctomycetes and Firmicutes, with substantial variation across the bead types, indicating that the attaching communities were selected by the substrate. Further laboratory incubations for 7 days suggested the presence of a community of highly specialized taxa. After incubation for 35 days, the microbial composition across all beads and depths was similar and primarily composed of putative sulfur cycling microbes. In addition to the major shared microbial groups, subdominant taxa on chitin and protein-coated beads were detected pointing to specialized microbial degraders. These results highlight the role of particles as sites for attachment and biofilm formation, while the composition of organic matter defined a secondary part of the microbial community.


Asunto(s)
Microbiota , Bacterias/genética , Bacteroidetes , Mar Negro , Sulfuros
6.
Environ Microbiol ; 23(7): 3460-3476, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32955149

RESUMEN

An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class 'Natranaerobiia'. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood-Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+ -Rnf complex, Na+ -F1F0 ATPase and Na+ -translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.


Asunto(s)
Euryarchaeota , Lagos , Crecimiento Quimioautotrófico , ADN Bacteriano , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Environ Microbiol ; 23(6): 2834-2857, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33000514

RESUMEN

Dysoxic marine waters (DMW, < 1 µM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open-ocean DMW. This review summarizes the current knowledge on these sulfur-cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate-reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome-assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur-oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS-GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation, reduction or disproportionation of sulfur cycle intermediates such as S0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur-cycling bacteria in DMW.


Asunto(s)
Ecosistema , Azufre , Bacterias/genética , Metagenoma , Oxidación-Reducción , Oxígeno , Agua de Mar
8.
Proc Natl Acad Sci U S A ; 115(43): 10926-10931, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301807

RESUMEN

Terrestrial paleoclimate archives such as lake sediments are essential for our understanding of the continental climate system and for the modeling of future climate scenarios. However, quantitative proxies for the determination of paleotemperatures are sparse. The relative abundances of certain bacterial lipids, i.e., branched glycerol dialkyl glycerol tetraethers (brGDGTs), respond to changes in environmental temperature, and thus have great potential for climate reconstruction. Their application to lake deposits, however, is hampered by the lack of fundamental knowledge on the ecology of brGDGT-producing microbes in lakes. Here, we show that brGDGTs are synthesized by multiple groups of bacteria thriving under contrasting redox regimes in a deep meromictic Swiss lake (Lake Lugano). This niche partitioning is evidenced by highly distinct brGDGT inventories in oxic vs. anoxic water masses, and corresponding vertical patterns in bacterial 16S rRNA gene abundances, implying that sedimentary brGDGT records are affected by temperature-independent changes in the community composition of their microbial producers. Furthermore, the stable carbon isotope composition (δ13C) of brGDGTs in Lake Lugano and 34 other (peri-)Alpine lakes attests to the widespread heterotrophic incorporation of 13C-depleted, methane-derived biomass at the redox transition zone of mesotrophic to eutrophic lake systems. The brGDGTs produced under such hypoxic/methanotrophic conditions reflect near-bottom water temperatures, and are characterized by comparatively low δ13C values. Depending on climate zone and water depth, lake sediment archives predominated by deeper water/low-13C brGDGTs may provide more reliable records of climate variability than those where brGDGTs derive from terrestrial and/or aquatic sources with distinct temperature imprints.


Asunto(s)
Bacterias/metabolismo , Glicerol/metabolismo , Lagos/microbiología , Lípidos/química , Biomasa , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecología , Sedimentos Geológicos/microbiología , Metano/metabolismo , Oxidación-Reducción , ARN Ribosómico 16S/metabolismo
9.
Angew Chem Int Ed Engl ; 60(32): 17504-17513, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34114718

RESUMEN

Crenarchaeol is a glycerol dialkyl glycerol tetraether lipid produced exclusively in Archaea of the phylum Thaumarchaeota. This membrane-spanning lipid is undoubtedly the structurally most sophisticated of all known archaeal lipids and an iconic molecule in organic geochemistry. The 66-membered macrocycle possesses a unique chemical structure featuring 22 mostly remote stereocenters, and a cyclohexane ring connected by a single bond to a cyclopentane ring. Herein we report the first total synthesis of the proposed structure of crenarchaeol. Comparison with natural crenarchaeol allowed us to propose a revised structure of crenarchaeol, wherein one of the 22 stereocenters is inverted.

10.
Environ Microbiol ; 22(2): 766-782, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31814267

RESUMEN

Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 µM day-1 ) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.


Asunto(s)
Lagos/microbiología , Metano/metabolismo , Methylococcaceae/metabolismo , Nitratos/análisis , Sulfatos/análisis , Anaerobiosis/fisiología , Desnitrificación/genética , Methylococcaceae/crecimiento & desarrollo , Nitritos/análisis , Oxidación-Reducción , Oxígeno/metabolismo , Washingtón
11.
Int J Syst Evol Microbiol ; 70(4): 2499-2508, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32559826

RESUMEN

An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0-3.3 µm in length and 1.0-1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and Methylomicrobium were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class Gammaproteobacteria and family Methylococcaceae, most closely related to members of the genera Methylomicrobium and Methylobacter (95.0-97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA-DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.


Asunto(s)
Methylococcaceae/clasificación , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Estanques/microbiología , Alberta , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
12.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31420340

RESUMEN

"Candidatus Nitrosotenuis uzonensis" is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (cren') were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and cren' increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the "Ca Nitrosotenuis uzonensis" cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of "Ca Nitrosotenuis uzonensis" demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high cren' content.IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. "Ca Nitrosotenuis uzonensis" is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of "Ca Nitrosotenuis uzonensis" cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.


Asunto(s)
Archaea/química , Membrana Celular/química , Lípidos de la Membrana/análisis , Temperatura , Amoníaco/metabolismo , Archaea/crecimiento & desarrollo , Éteres de Glicerilo/análisis , Oxidación-Reducción
13.
Int J Syst Evol Microbiol ; 69(9): 2662-2673, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31166158

RESUMEN

Eight pure cultures of alkaliphilic haloaloarchaea capable of growth by dissimilatory sulfur reduction (previously only shown for neutrophilic haloarchaea) were isolated from hypersaline alkaline lakes in different geographic locations. These anaerobic enrichments, inoculated with sediments and brines, used formate, butyrate and peptone as electron donors and elemental sulfur as an electron acceptor 4 M total Na+ and at pH 9-10. According to 16S rRNA gene sequencing, the isolates fell into two distinct groups. A major group, comprising seven obligate alkaliphilic isolates from highly alkaline soda lakes, represents a new species-level branch within the genus Natronolimnobius (order Natrialbales), while a single moderately alkaliphilic isolate from the less alkaline Searles Lake forms a novel genus-level lineage within the order Haloferacales. The cells of the isolates are either flat rods or coccoid. They are facultative anaerobes using formate or H2 (in the presence of acetate or yeast extract as carbon source), C4-C9 fatty acids or peptone (the major group) as electron donors and either sulfur or DMSO (the major group) as electron acceptors. Aerobic growth is only possible with organic acids and peptone-yeast extract. All isolates are extreme halophiles, growing optimally at 4 M total Na+. On the basis of their unique physiological properties and distinct phylogeny, we propose that the seven isolates from the soda lakes are placed into a novel species, Natronolimnobiussulfurireducens sp. nov. (type strain AArc1T=JCM 30663T=UNIQEM U932T), and the Searles Lake isolate, AArc-SlT, into a new genus and species Halalkaliarchaeum desulfuricum (=JCM 30664T=UNIQEM U999T).


Asunto(s)
Halobacteriaceae/clasificación , Halobacteriales/clasificación , Lagos/microbiología , Filogenia , Salinidad , Composición de Base , California , Ácidos Grasos/química , Halobacteriaceae/aislamiento & purificación , Halobacteriales/aislamiento & purificación , Pigmentación , ARN Ribosómico 16S/genética , Federación de Rusia , Sales (Química) , Análisis de Secuencia de ADN , Azufre/metabolismo
14.
Int J Syst Evol Microbiol ; 69(5): 1327-1335, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30801242

RESUMEN

An extremely halophilic euryarchaeon, strain HArcel1T, was enriched and isolated in pure culture from the surface brines and sediments of hypersaline athalassic lakes in the Kulunda Steppe (Altai region, Russia) using amorphous cellulose as the growth substrate. The colonies of HArcel1T are pale-orange, and form large zones of cellulose hydrolysis around them. The cells are non-motile cocci of variable size with a thin monolayer cell wall. The isolate is an obligate aerobic heterotroph capable of growth with only three substrates: various forms of insoluble cellulose, xylan and cellobiose. Strain HArcel1T is an extremely halophilic neutrophile, growing within the salinity range from 2.5 to 5 M NaCl (optimum at 3.5-4 M). The core archaeal lipids are dominated by C20-C20 and C25-C20 dialkyl glycerol ethers, in approximately 6:1 proportion. The 16S rRNA and rpoB' gene analysis indicated that HArcel1T forms a separate lineage within the family Haloarculaceae, order Halobacteriales, with the genera Halorhabdus and Halopricus as closest relatives. On the basis of the unique phenotypic properties and distinct phylogeny of the 16S rRNA and rpoB' genes, it is suggested that strain HArcel1T is classified into a new genus and species Halococcoides cellulosivorans gen. nov., sp. nov. (JCM 31941T=UNIQEM U975T).


Asunto(s)
Sedimentos Geológicos/microbiología , Halobacteriales/clasificación , Lagos/microbiología , Filogenia , Sales (Química) , Celulosa , ADN de Archaea/genética , Ácidos Grasos/química , Genes Arqueales , Halobacteriales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
15.
Int J Syst Evol Microbiol ; 69(4): 1195-1201, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30775959

RESUMEN

An isolate of strictly aerobic, pale-pink pigmented bacteria, strain AF10T, was obtained from an organic soil layer in forested tundra, Nadym region, West Siberia. Cells of strain AF10T were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance and formed large cell aggregates in old cultures. These bacteria were chemoorganotrophic, mildly acidophilic and psychrotolerant, and grew between pH 3.5 and 7.0 (optimum, pH 4.5-5.0) and at temperatures between 2 and 30 °C. The preferred growth substrates were sugars and some polysaccharides. The major fatty acids were iso-C15 : 0, C16 : 0, C16 : 1∆9 c and 13,16-dimethyl octacosanedioic acid. The genome of strain AF10T was 6.14 Mbp in size and encoded a wide repertoire of carbohydrate active enzymes. The genomic DNA G+C content was 59.8 mol%. Phylogenetic analysis indicated that strain AF10T is a member of the genus Granulicella, family Acidobacteriaceae, but displays 94.4-98.0 % 16S rRNA gene sequence similarity to currently described members of this genus. On the basis of phenotypic, chemotaxonomic, phylogenetic and genomic analyses, we propose to classify this bacterium as representing a novel species of the genus Granulicella, Granulicellasibirica sp. nov. Strain AF10T (=DSM 104461T=VKM B-3276T) is the type strain.


Asunto(s)
Acidobacteria/clasificación , Bosques , Filogenia , Microbiología del Suelo , Tundra , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia
16.
Proc Natl Acad Sci U S A ; 113(28): 7888-93, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27339136

RESUMEN

Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 µM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes.


Asunto(s)
Amoníaco/metabolismo , Archaea/fisiología , Peróxido de Hidrógeno/metabolismo , Archaea/aislamiento & purificación , Genoma Bacteriano , Nitrificación , Oxidación-Reducción , Peroxidasa/metabolismo
17.
Int J Syst Evol Microbiol ; 68(4): 1265-1270, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29465339

RESUMEN

An isolate of aerobic, Gram-stain-negative, rod-shaped, non-motile and light-pink pigmented bacteria, designated SBC68T, was obtained from slightly decomposed thalli of the lichen Cladonia sp. collected from the forested tundra of north-western Siberia. Cells of this isolate occurred singly, in pairs or in rosettes. These bacteria were acidophilic (optimum growth at pH 4.3-5.6) and mesophilic (optimum growth at 20-30 °C) but were also capable of growth at low temperatures, down to 7 °C. The preferred growth substrates were sugars, some organic acids and lichenan. The major fatty acids were iso-C15 : 0, C16 : 1ω7c, C16 : 0, C16 : 1ω7t, and 13,16-dimethyl octacosanedioic acid. The only quinone was MK-8, and the G+C content of the DNA was 54.7 mol%. SBC68T represented a member of the family Acidobactericeae; the closest taxonomically described relatives were Edaphobacter dinghuensis DHF9T and Granulicella aggregans TPB6028T (97.2 and 97.1 % 16S rRNA gene sequence similarity, respectively). In 16S rRNA gene-based trees, SBC68T clustered together with species of the genus Edaphobacter. However, this isolate differed from all previously described species of the genus Edaphobacter with respect to the pink pigmentation, formation of cell rosettes and substrate utilization pattern. On the basis of these data, strain SBC68T should be considered to represent a novel species of acidobacteria, for which the name Edaphobacter lichenicola sp. nov. is proposed. The type strain is SBC68T (=DSM 104462T=VKM B-3208T).

18.
Int J Syst Evol Microbiol ; 68(4): 1078-1084, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29461179

RESUMEN

A novel member of the phylum Verrucomicrobia was isolated from an oilsands tailings pond in Alberta, Canada. Cells of isolate NVTT are Gram-negative, strictly aerobic, non-pigmented, non-motile cocci to diplococci 0.5-1.0 µm in diameter. The bacterium is neutrophilic (optimum pH 6.0-8.0) but alkalitolerant, capable of growth between pH 5.5 and 11.0. The temperature range for growth is 15-40 °C (optimum 25-37 °C). Carbon and energy sources include sugars and organic acids. Nitrogen sources include nitrate, urea, l-glycine, l-alanine, l-proline and l-serine. Does not fix atmospheric nitrogen. Does not require NaCl and is inhibited at NaCl concentrations above 3.0 % (w/v). The DNA G+C content of strain NVTT, based on a draft genome sequence, is 66.1 mol%. MK-6 and MK-7 are the major respiratory quinones. Major cellular fatty acids are anteiso-C15 : 0 and iso-C15 : 0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the strain belongs to the family Opitutaceae of the phylum Verrucomicrobia. The most closely related validated species is Opitutus terrae (93.7 % 16S rRNA gene sequence identity to its type strain PB90-1T). Based on genotypic, phenotypic and chemotaxonomic characteristics, it was concluded that this strain represents a novel genus and species, for which the name Oleiharenicola alkalitolerans gen. nov., sp. nov. is proposed. The type strain of this novel species is NVTT (=ATCC BAA-2697T;=DSM 29249T).

19.
Int J Syst Evol Microbiol ; 68(7): 2199-2208, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29781801

RESUMEN

Methanogenic enrichments from hypersaline lakes at moderate thermophilic conditions have resulted in the cultivation of an unknown deep lineage of euryarchaeota related to the class Halobacteria. Eleven soda lake isolates and three salt lake enrichment cultures were methyl-reducing methanogens that utilize C1 methylated compounds as electron acceptors and H2 or formate as electron donors, but they were unable to grow on either substrates alone or to form methane from acetate. They are extreme halophiles, growing optimally at 4 M total Na+ and the first representatives of methanogens employing the 'salt-in' osmoprotective mechanism. The salt lake subgroup is neutrophilic, whereas the soda lake isolates are obligate alkaliphiles, with an optimum around pH 9.5. Both grow optimally at 50 °C. The genetic diversity inside the two subgroups is very low, indicating that the soda and salt lake clusters consist of a single genetic species each. The phylogenetic distance between the two subgroups is in the range of distant genera, whereas the distance to other euryarchaea is below 83 % identity of the 16S rRNA gene. These isolates and enriched methanogens, together with closely related environmental clones from hypersaline habitats (the SA1 group), form a novel class-level clade in the phylum Euryarchaeota. On the basis of distinct phenotypic and genetic properties, the soda lake isolates are classified into a new genus and species, Methanonatronarchaeum thermophilum, with the type strain AMET1T (DSM 28684T=NBRC 110805T=UNIQEM U982T), and the salt lake methanogens into a candidate genus and species 'Candidatus Methanohalarchaeum thermophilum'. These organisms are proposed to form novel family, order and class Methanonatronarchaeaceae fam. nov., Methanonatronarchaeales ord. nov. and Methanonatronarchaeia classis nov., within the phylum Euryarchaeota.


Asunto(s)
Euryarchaeota/clasificación , Lagos/microbiología , Metano/metabolismo , Filogenia , Salinidad , Composición de Base , California , Crecimiento Quimioautotrófico , Egipto , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
20.
Environ Microbiol ; 19(6): 2119-2132, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28142226

RESUMEN

Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past.


Asunto(s)
Cianobacterias/metabolismo , Desnitrificación/fisiología , Lípidos/fisiología , Nitrificación/fisiología , Fijación del Nitrógeno/fisiología , Bacterias Fijadoras de Nitrógeno/metabolismo , Biomarcadores , Clima , Nitrógeno/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA