Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 25(31): 7111-20, 2005 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16079393

RESUMEN

Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. The C terminus of human Cx32 contains a putative prenylation motif that is conserved in Cx32 orthologs. Using [3H]mevalonolactone ([3H]MVA) incorporation, we demonstrated that wild-type human connexin32 can be prenylated in COS7 cells, in contrast to disease-associated mutations that are predicted to disrupt the prenylation motif. We generated transgenic mice that express these mutants in myelinating Schwann cells. Male mice expressing a transgene were crossed with female Gjb1-null mice; the male offspring were all Gjb1-null, and one-half were transgene positive; in these mice, all Cx32 was derived from expression of the transgene. The mutant human protein was properly localized in myelinating Schwann cells in multiple transgenic lines and did not alter the localization of other components of paranodes and incisures. Finally, both the C280G and the S281x mutants appeared to "rescue" the phenotype of Gjb1-null mice, because transgene-positive male mice had significantly fewer abnormally myelinated axons than did their transgene-negative male littermates. These results indicate that Cx32 is prenylated, but that prenylation is not required for proper trafficking of Cx32 and perhaps not even for certain aspects of its function, in myelinating Schwann cells.


Asunto(s)
Conexinas/genética , Conexinas/fisiología , Mutación , Vaina de Mielina/fisiología , Prenilación de Proteína/genética , Células de Schwann/fisiología , Secuencias de Aminoácidos/genética , Animales , Codón de Terminación , Conexinas/deficiencia , Conexinas/metabolismo , Secuencia Conservada , Cisteína , ADN/metabolismo , Evolución Molecular , Femenino , Nervio Femoral/fisiología , Glicina , Humanos , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Nervio Ciático/fisiología , Serina , Distribución Tisular , Proteína beta1 de Unión Comunicante
2.
J Neurosci ; 25(41): 9418-27, 2005 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-16221851

RESUMEN

Nodes of Ranvier are specialized axonal domains, at which voltage-gated sodium channels cluster. How axons cluster molecules in discrete domains is mostly unknown. Both axons and glia probably provide constraining mechanisms that contribute to domain formation. Proper sodium channel clustering in peripheral nerves depends on contact from Schwann cell microvilli, where at least one molecule, gliomedin, binds the sodium channel complex and induces its clustering. Furthermore, mice lacking Schwann cell dystroglycan have aberrant microvilli and poorly clustered sodium channels. Dystroglycan could interact at the basal lamina or at the axonglial surface. Because dystroglycan is a laminin receptor, and laminin 2 mutations [merosin-deficient congenital muscular dystrophy (MDC1A)] cause reduced nerve conduction velocity, we asked whether laminins are involved. Here, we show that the composition of both laminins and the dystroglycan complex at nodes differs from that of internodes. Mice defective in laminin 2 have poorly formed microvilli and abnormal sodium clusters. These abnormalities are similar, albeit less severe, than those of mice lacking dystroglycan. However, mice lacking all Schwann cell laminins show severe nodal abnormalities, suggesting that other laminins compensate for the lack of laminin 2. Thus, although laminins are located at a distance from the axoglial junction, they are required for proper clustering of sodium channels. Laminins, through their specific nodal receptors and cytoskeletal linkages, may participate in the formation of mechanisms that constrain clusters at nodes. Finally, abnormal sodium channel clusters are present in a patient with MDC1A, providing a molecular basis for the reduced nerve conduction velocity in this disorder.


Asunto(s)
Distroglicanos/fisiología , Laminina/fisiología , Nódulos de Ranvier/fisiología , Células de Schwann/fisiología , Canales de Sodio/fisiología , Animales , Distroglicanos/deficiencia , Distroglicanos/genética , Humanos , Laminina/deficiencia , Laminina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas
3.
Br J Pharmacol ; 173(21): 3080-3087, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27417329

RESUMEN

BACKGROUND AND PURPOSE: Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper-reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen-induced mast cell degranulation, a central component of allergen-induced inflammation and AHR. However, the role of Syk in IgE-mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE-mediated constriction and mast cell mediator release in human small airways. EXPERIMENTAL APPROACH: Human precision cut lung slices (hPCLS) ex vivo derived from non-asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High-affinity IgE receptor (FcεRI) activation by anti-IgE cross-linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. KEY RESULTS: While dexamethasone had little effect on FcεR-mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti-IgE-mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE-treated hPCLS. In contrast, SYKi had little effect on the non-allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. CONCLUSIONS AND IMPLICATIONS: A selective Syk inhibitor, but not corticosteroids, abolished FcεR-mediated contraction in human small airways ex vivo. The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.


Asunto(s)
Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Bazo/enzimología , Células Cultivadas , Humanos , Técnicas In Vitro , Pulmón/citología , Pulmón/enzimología , Pulmón/inmunología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/inmunología , Músculo Liso/enzimología , Músculo Liso/inmunología , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo
4.
J Neurosci ; 22(23): 10217-31, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12451123

RESUMEN

Despite the importance of myelinating Schwann cells in health and disease, little is known about the genetic mechanisms underlying their development. The POU domain transcription factor pou3f1 (Tst-1, SCIP, Oct-6) is required for the normal differentiation of myelinating Schwann cells, but its precise role requires identification of the genes that it regulates. Here we report the isolation of six genes whose expression is reduced in the absence of pou3f1. Only one of these genes, the fatty acid transport protein P2, was known previously to be expressed in Schwann cells. The LIM domain proteins cysteine-rich protein-1 (CRP1) and CRP2 are expressed in sciatic nerve and induced by forskolin in cultured Schwann cells, but only CRP2 requires pou3f1 for normal expression. pou3f1 appears to require the claw paw gene product for activation of at least some of its downstream effector genes. Expression of the novel Schwann cell genes after nerve injury suggests that they are myelin related. One of the genes, tramdorin1, encodes a novel amino acid transport protein that is localized to paranodes and incisures. Our results suggest that pou3f1 functions to activate gene expression in the differentiation of myelinating Schwann cells.


Asunto(s)
Proteínas Aviares , Regulación hacia Abajo/fisiología , Perfilación de la Expresión Génica , Nervio Ciático/metabolismo , Neuropatía Ciática/metabolismo , Factores de Transcripción/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Sistemas de Transporte de Aminoácidos/fisiología , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Colforsina/farmacología , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Proteínas con Dominio LIM , Ratones , Ratones Mutantes , Vaina de Mielina/metabolismo , Factor 6 de Transcripción de Unión a Octámeros , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Comp Neurol ; 479(4): 424-34, 2004 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-15514980

RESUMEN

Intraneurally injected lysolecithin causes both segmental and paranodal demyelination. In demyelinated internodes, axonal components of nodes fragment and disappear, glial and axonal paranodal and juxtaparanodal proteins no longer cluster, and axonal Kv1.1/Kv1.2 K+ channels move from the juxtaparanodal region to appose the remaining heminodes. In paranodal demyelination, a gap separates two distinct heminodes, each of which contains the molecular components of normal nodes; paranodal and juxtaparanodal proteins are properly localized. As in normal nodes, widened nodal regions contain little or no band 4.1B. Lysolecithin also causes "unwinding" of paranodes: The spiral of Schwann cell membrane moves away from the paranodes, but the glial and axonal components of septate-like junctions remain colocalized. Thus, acute demyelination has distinct effects on the molecular organization of the nodal, paranodal, and juxtaparanodal region, reflecting altered axon-Schwann cell interactions.


Asunto(s)
Membrana Celular/metabolismo , Enfermedades Desmielinizantes/metabolismo , Nervios Periféricos/metabolismo , Nódulos de Ranvier/metabolismo , Células de Schwann/metabolismo , Enfermedad Aguda , Animales , Comunicación Celular , Membrana Celular/patología , Membrana Celular/ultraestructura , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Inmunohistoquímica , Canal de Potasio Kv.1.1 , Lisofosfatidilcolinas , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos , Microscopía Electrónica de Transmisión , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Canales de Potasio con Entrada de Voltaje/metabolismo , Nódulos de Ranvier/patología , Nódulos de Ranvier/ultraestructura , Ratas , Ratas Sprague-Dawley , Células de Schwann/patología , Células de Schwann/ultraestructura
6.
J Cell Mol Med ; 12(2): 679-89, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021315

RESUMEN

Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Animales , Animales Recién Nacidos , Células COS , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/clasificación , Chlorocebus aethiops , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/metabolismo , Células de Purkinje/metabolismo , Células Piramidales/metabolismo , Ratas , Médula Espinal/metabolismo
7.
Neurobiol Dis ; 17(2): 290-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15474366

RESUMEN

Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.


Asunto(s)
Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Vaina de Mielina , Proteínas Nucleares/metabolismo , Células de Schwann/metabolismo , Animales , Axones , Células COS , Proteínas de Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Neuropatía Hereditaria Motora y Sensorial/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA