Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36164730

RESUMEN

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-ARNt Sintetasas/genética , Mutación , ARN de Transferencia/genética , Suplementos Dietéticos
2.
Genet Med ; 26(2): 101012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37924259

RESUMEN

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Estudios Prospectivos , Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Pruebas Genéticas/métodos , Ontario
3.
Am J Med Genet A ; 194(7): e63559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38421105

RESUMEN

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.


Asunto(s)
Haploinsuficiencia , Trastornos del Desarrollo del Lenguaje , Humanos , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Preescolar , Niño , Lactante , Fenotipo , Predisposición Genética a la Enfermedad
4.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757831

RESUMEN

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Asunto(s)
Distonía , Trastornos Distónicos , Malformaciones del Sistema Nervioso , Masculino , Humanos , Estudios Transversales , Mutación/genética , Fenotipo , Distonía/genética , Trastornos Distónicos/genética , Chaperonas Moleculares/genética
5.
Am J Hum Genet ; 106(1): 129-136, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883644

RESUMEN

Birth defects occur in up to 3% of all live births and are the leading cause of infant death. Here we present five individuals from four unrelated families, individuals who share similar phenotypes with disease-causal bi-allelic variants in NADSYN1, encoding NAD synthetase 1, the final enzyme of the nicotinamide adenine dinucleotide (NAD) de novo synthesis pathway. Defects range from the isolated absence of both kidneys to multiple malformations of the vertebrae, heart, limbs, and kidney, and no affected individual survived for more than three months postnatally. NAD is an essential coenzyme for numerous cellular processes. Bi-allelic loss-of-function mutations in genes required for the de novo synthesis of NAD were previously identified in individuals with multiple congenital abnormalities affecting the heart, kidney, vertebrae, and limbs. Functional assessments of NADSYN1 missense variants, through a combination of yeast complementation and enzymatic assays, show impaired enzymatic activity and severely reduced NAD levels. Thus, NADSYN1 represents an additional gene required for NAD synthesis during embryogenesis, and NADSYN1 has bi-allelic missense variants that cause NAD deficiency-dependent malformations. Our findings expand the genotypic spectrum of congenital NAD deficiency disorders and further implicate mutation of additional genes involved in de novo NAD synthesis as potential causes of complex birth defects.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Anomalías Congénitas/etiología , Insuficiencia Multiorgánica/etiología , Mutación Missense , NAD/deficiencia , Alelos , Secuencia de Aminoácidos , Anomalías Congénitas/patología , Femenino , Genotipo , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Insuficiencia Multiorgánica/patología , Linaje , Fenotipo , Embarazo , Homología de Secuencia
6.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109418

RESUMEN

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios de Cohortes , Heterogeneidad Genética , Humanos , Síndrome
7.
Am J Hum Genet ; 104(4): 685-700, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929737

RESUMEN

Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained. Some of these cases have been shown to result from DNA methylation defects at a single locus (epi-variants), while others can exhibit syndrome-specific DNA methylation changes across multiple loci (epi-signatures). Here, we investigate the clinical diagnostic utility of genome-wide DNA methylation analysis of peripheral blood in unresolved ND/CAs. We generate a computational model enabling concurrent detection of 14 syndromes using DNA methylation data with full accuracy. We demonstrate the ability of this model in resolving 67 individuals with uncertain clinical diagnoses, some of whom had variants of unknown clinical significance (VUS) in the related genes. We show that the provisional diagnoses can be ruled out in many of the case subjects, some of whom are shown by our model to have other diseases initially not considered. By applying this model to a cohort of 965 ND/CA-affected subjects without a previous diagnostic assumption and a separate assessment of rare epi-variants in this cohort, we identify 15 case subjects with syndromic Mendelian disorders, 12 case subjects with imprinting and trinucleotide repeat expansion disorders, as well as 106 case subjects with rare epi-variants, a portion of which involved genes clinically or functionally linked to the subjects' phenotypes. This study demonstrates that genomic DNA methylation analysis can facilitate the molecular diagnosis of unresolved clinical cases and highlights the potential value of epigenomic testing in the routine clinical assessment of ND/CAs.


Asunto(s)
Anomalías Congénitas/genética , Metilación de ADN , Enfermedades Genéticas Congénitas/diagnóstico , Estudio de Asociación del Genoma Completo , Estudios de Cohortes , Simulación por Computador , Anomalías Congénitas/diagnóstico , Variaciones en el Número de Copia de ADN , Epigenómica , Dosificación de Gen , Enfermedades Genéticas Congénitas/genética , Variación Genética , Impresión Genómica , Humanos , Fenotipo , Análisis de Secuencia de ADN , Síndrome , Expansión de Repetición de Trinucleótido
8.
Neuropediatrics ; 53(3): 204-207, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34852373

RESUMEN

Stroke in infancy is a rare phenomenon but can lead to significant long-term disability. We present the story of a 6-month-old Old Order Amish infant with underlying Williams syndrome, a rare neurodevelopmental disorder caused by a microdeletion, encompassing the elastin gene that produces abnormalities in elastic fibers of the lungs and vessels. This infant presented with lethargy, irritability, and a new-onset generalized tonic-clonic seizure. Brain magnetic resonance imaging (MRI) was consistent with ischemic stroke in the supratentorial regions. MR angiogram demonstrated bilateral narrowing of the internal carotid arteries with "ivy sign," suggestive of Moyamoya. Moyamoya disease/syndrome is a cerebrovascular condition that is associated with progressive stenosis of the intracranial vessels and can cause ischemic stroke in young children. Targeted mutation analysis revealed a homozygous c.1411-2A > G splice site variant in the SAMHD1 gene, consistent with a diagnosis of Aicardi-Goutières syndrome type 5 (AGS5), an autosomal recessive condition with multisystem involvement. In our unique case of infantile stroke with Moyamoya syndrome and dual diagnosis of Williams syndrome and AGS5, both diagnoses likely contributed to the cerebrovascular pathology. This case report highlights the importance of suspecting and testing for multiple genetic abnormalities in children presenting with Moyamoya-related stroke.


Asunto(s)
Anomalías Múltiples , Accidente Cerebrovascular Isquémico , Enfermedad de Moyamoya , Accidente Cerebrovascular , Síndrome de Williams , Anomalías Múltiples/genética , Enfermedades Autoinmunes del Sistema Nervioso , Niño , Preescolar , Humanos , Lactante , Enfermedad de Moyamoya/complicaciones , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/genética , Malformaciones del Sistema Nervioso , Accidente Cerebrovascular/complicaciones , Síndrome de Williams/complicaciones , Síndrome de Williams/genética
9.
J Obstet Gynaecol Can ; 44(7): 798-802, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35131504

RESUMEN

A 35-year-old woman was referred to genetics for 2 soft markers but was also found to have polyhydramnios. The couple were Old Order Mennonite, and carrier testing allowed for targeted investigation of syndromes associated with polyhydramnios in this population. Both parents were carriers of a 7304 bp deletion in the STRADA (LYK5) gene, causing an autosomal recessive syndrome of polyhydramnios, megalencephaly, and symptomatic epilepsy. This led to early recognition and treatment of neonatal seizures. Targeted testing can significantly shorten the diagnostic odyssey and decrease the cost of investigations, an especially important consideration for families who do not accept health insurance.


Asunto(s)
Epilepsia , Polihidramnios , Adulto , Canadá , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Humanos , Recién Nacido , Polihidramnios/diagnóstico , Polihidramnios/genética , Embarazo , Síndrome
10.
Genet Med ; 23(6): 1065-1074, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33547396

RESUMEN

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Asunto(s)
Metilación de ADN , Epigenómica , Canadá , Europa (Continente) , Humanos , Síndrome
11.
Genet Med ; 23(2): 384-395, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33173220

RESUMEN

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Femenino , Genes Ligados a X , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Secuenciación del Exoma
12.
Genet Med ; 23(7): 1234-1245, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33824499

RESUMEN

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Mutación Missense , Fenotipo
13.
J Hum Genet ; 66(5): 451-464, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33093641

RESUMEN

The adaptation of a broad genomic sequencing approach in the clinical setting has been accompanied by considerations regarding the clinical utility, technical performance, and diagnostic yield compared to targeted genetic approaches. We have developed MedExome, an integrated framework for sequencing, variant calling (SNVs, Indels, and CNVs), and clinical assessment of ~4600 medically relevant genes. We compared the technical performance of MedExome with the whole-exome and targeted gene-panel sequencing, assessed the reasons for discordance, and evaluated the added clinical yield of MedExome in a cohort of unresolved subjects suspected of genetic disease. Our analysis showed that despite a higher average read depth in panels (3058 vs. 855), MedExome yielded full coverage of the enriched regions (>20X) and 99% variant concordance rate with panels. The discordance rate was associated with low-complexity regions, high-GC content, and low allele fractions, observed in both platforms. MedExome yielded full sensitivity in detecting clinically actionable variants, and the assessment of 138 patients with suspected genetic conditions resulted in 76 clinical reports (31 full [22.1%], 3 partial, and 42 uncertain/possible molecular diagnoses). MedExome sequencing has comparable performance in variant detection to gene panels. Added diagnostic yield justifies expanded implementation of broad genomic approaches in unresolved patients; however, cost-benefit and health systems impact warrants assessment.


Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , Alelos , Composición de Base , Consanguinidad , Variaciones en el Número de Copia de ADN , Exoma , Biblioteca de Genes , Variación Genética , Homocigoto , Humanos , Mutación INDEL , Ontario , Mutación Puntual , Alineación de Secuencia , Flujo de Trabajo
14.
Am J Med Genet A ; 185(8): 2507-2513, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33988295

RESUMEN

Neonatal Marfan syndrome is a severe, early onset presentation of pathogenic variants in FBN1. Because of the significant cardiac involvement and early mortality, nearly all reported cases have been de novo, and the disorder has not been documented to be inherited from a symptomatic parent. Here, we present a female infant with neonatal Marfan syndrome who was born to a father with Marfan syndrome. Prior to the birth of his daughter, the father had been found to have an FBN1 missense variant of uncertain clinical significance. Initial familial variant testing of the infant did not reveal the same missense variant, but Sanger sequencing of FBN1 subsequently identified a pathogenic splice site variant. The father was then found to have 10%-20% mosaicism for the same splice site variant.


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mosaicismo , Mutación , Sitios de Empalme de ARN , Adulto , Alelos , Ecocardiografía , Resultado Fatal , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Recién Nacido , Masculino , Linaje , Fenotipo , Análisis de Secuencia de ADN , Evaluación de Síntomas
15.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498634

RESUMEN

A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual Ligada al Cromosoma X/genética , Adulto , Estudios de Casos y Controles , Niño , Proteínas de Unión al ADN/genética , Epigenoma , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/etiología , Persona de Mediana Edad , Modelos Genéticos , Trastornos del Neurodesarrollo/genética , Proteínas de Unión al ARN/genética
16.
Am J Med Genet A ; 182(10): 2284-2290, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33043632

RESUMEN

Autosomal recessively inherited pathogenic variants in genes associated with the renin-angiotensin-aldosterone system (RAAS) result in early onset oligohydramnios and clinical features of the Potter sequence, typically in association with proximal renal tubules dysgenesis. We describe two siblings and a first cousin who had severe oligohydramnios in the second trimester, and presented at birth with loose skin, wide fontanelles and sutures, and pulmonary insufficiency. Two had refractory hypotension during their brief lives and one received palliative care after birth. All were found to have a homozygous nonsense variant, REN: c.891delG; p.Tyr287*, on exome sequencing. Autopsy limited to the genitourinary system in two of the children revealed normal renal tubular histology in both. Immunoblotting confirmed diminished expression of renin within cultured skin fibroblasts. To our knowledge, this is the first identification of an association between biallelic variants in REN and oligohydramnios in the absence of renal tubular dysgenesis. Due to its role in the RAAS, it has previously been proposed that the decreased expression of REN results in hypotension, ischemia, and decreased urine production. We suggest sequencing of genes in the RAAS, including REN, should be considered in cases of severe early onset oligohydramnios, even when renal morphology and histology are normal.


Asunto(s)
Síndrome de Fanconi/genética , Predisposición Genética a la Enfermedad , Oligohidramnios/genética , Sistema Renina-Angiotensina/genética , Renina/genética , Adulto , Amish/genética , Niño , Síndrome de Fanconi/patología , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Hipotensión/genética , Hipotensión/patología , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Mutación/genética , Oligohidramnios/patología , Embarazo , Secuenciación del Exoma
17.
BMC Pediatr ; 20(1): 311, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590952

RESUMEN

BACKGROUND: Bartter syndrome subtypes are a group of rare renal tubular diseases characterized by impaired salt reabsorption in the tubule, specifically the thick ascending limb of Henle's loop. Clinically, they are characterized by the association of hypokalemic metabolic alkalosis, hypercalciuria, nephrocalcinosis, increased levels of plasma renin and aldosterone, low blood pressure and vascular resistance to angiotensin II. Bartter syndrome type II is caused by mutations in the renal outer medullary potassium channel (ROMK) gene (KCNJ1), can present in the newborn period and typically requires lifelong therapy. CASE PRESENTATION: We describe a case of a prematurely born female infant presenting with antenatal polyhydramnios, and postnatal dehydration and hyponatremia. After 7 weeks of sodium supplementation, the patient demonstrated complete resolution of her hyponatremia and developed only transient metabolic alkalosis at 2 months of age but continues to be polyuric and exhibits hypercalciuria, without development of nephrocalcinosis. She was found to have two pathogenic variants in the KCNJ1 gene: a frameshift deletion, p.Glu334Glyfs*35 and a missense variant, p. Pro110Leu. While many features of classic ROMK mutations have resolved, the child does have Bartter syndrome type II and needs prolonged pediatric nephrology follow-up. CONCLUSION: Transient neonatal hyponatremia warrants a multi-system workup and genetic variants of KCNJ1 should be considered.


Asunto(s)
Síndrome de Bartter , Hiponatremia , Nefrocalcinosis , Canales de Potasio de Rectificación Interna , Síndrome de Bartter/complicaciones , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Niño , Femenino , Humanos , Hiponatremia/diagnóstico , Hiponatremia/etiología , Lactante , Recién Nacido , Mutación , Canales de Potasio de Rectificación Interna/genética , Embarazo
18.
Hum Mol Genet ; 26(21): 4278-4289, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973161

RESUMEN

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Adulto , Animales , Encéfalo/anomalías , Corteza Cerebral/metabolismo , Drosophila melanogaster , Epilepsia/genética , Epilepsia/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Malformaciones del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Linaje , Heterotopia Nodular Periventricular/genética , Terminales Presinápticos , Ratas , Convulsiones/metabolismo , Sinapsis/metabolismo , Secuenciación del Exoma
20.
Am J Med Genet A ; 179(3): 386-396, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30652412

RESUMEN

The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation-contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next-generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1-related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core-rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35-year-old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.


Asunto(s)
Variación Genética , Heterocigoto , Homocigoto , Canal Liberador de Calcio Receptor de Rianodina/genética , Adulto , Biopsia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Masculino , Linaje , Fenotipo , Estudios Retrospectivos , Ultrasonografía , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA